The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A351776 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * (n-j)^j/j!. 5
 1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 4, 3, 0, 1, -4, 12, -6, -4, 0, 1, -5, 24, -63, -8, -25, 0, 1, -6, 40, -204, 420, 150, 114, 0, 1, -7, 60, -465, 2288, -3435, -972, 287, 0, 1, -8, 84, -882, 7180, -32020, 33462, 3682, -4152, 0, 1, -9, 112, -1491, 17256, -138525, 537576, -379155, 6256, 1647, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Table of n, a(n) for n=0..65. FORMULA E.g.f. of column k: 1/(1 + k*x*exp(x)). T(0,k) = 1 and T(n,k) = -k * n * Sum_{j=0..n-1} binomial(n-1,j) * T(j,k) for n > 0. EXAMPLE Square array begins: 1, 1, 1, 1, 1, 1, ... 0, -1, -2, -3, -4, -5, ... 0, 0, 4, 12, 24, 40, ... 0, 3, -6, -63, -204, -465, ... 0, -4, -8, 420, 2288, 7180, ... 0, -25, 150, -3435, -32020, -138525, ... PROG (PARI) T(n, k) = n!*sum(j=0, n, (-k)^(n-j)*(n-j)^j/j!); (PARI) T(n, k) = if(n==0, 1, -k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k))); CROSSREFS Columns k=0..3 give A000007, A302397, A351777, A351778. Main diagonal gives A351779. Cf. A292861, A351761. Sequence in context: A242464 A273185 A373183 * A259784 A145224 A138157 Adjacent sequences: A351773 A351774 A351775 * A351777 A351778 A351779 KEYWORD sign,tabl AUTHOR Seiichi Manyama, Feb 19 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)