OFFSET
0,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..474
FORMULA
E.g.f.: 1/(1 + x*exp(x)).
a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*(n-k)^k/k!.
a(n) = Sum_{k=0..n} (-1)^k*k!*k^(n-k)*binomial(n,k).
EXAMPLE
1/(1 + x*exp(x)) = 1 - x/1! + 3*x^3/3! - 4*x^4/4! - 25*x^5/5! + 114*x^6/6! + 287*x^7/7! - 4152*x^8/8! + 1647*x^9/9! + ...
MAPLE
a:=series(1/(1+x*exp(x)), x=0, 25): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 24; CoefficientList[Series[1/(1 + x Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(-1)^(n - k) (n - k)^k/k!, {k, 0, n}], {n, 24}]]
Join[{1}, Table[Sum[(-1)^k k! k^(n - k) Binomial[n, k], {k, 0, n}], {n, 24}]]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 07 2018
STATUS
approved