login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302397
Expansion of e.g.f. 1/(1 + x*exp(x)).
18
1, -1, 0, 3, -4, -25, 114, 287, -4152, 1647, 192230, -807961, -10164804, 111209111, 454840554, -14657978385, 21202175504, 1988791958879, -15488971798194, -260886468394153, 4872247004699460, 23537372210149959, -1365745577227898350, 4274609859520565663, 364461939727273277016
OFFSET
0,4
LINKS
FORMULA
E.g.f.: 1/(1 + x*exp(x)).
a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*(n-k)^k/k!.
a(n) = Sum_{k=0..n} (-1)^k*k!*k^(n-k)*binomial(n,k).
EXAMPLE
1/(1 + x*exp(x)) = 1 - x/1! + 3*x^3/3! - 4*x^4/4! - 25*x^5/5! + 114*x^6/6! + 287*x^7/7! - 4152*x^8/8! + 1647*x^9/9! + ...
MAPLE
a:=series(1/(1+x*exp(x)), x=0, 25): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 24; CoefficientList[Series[1/(1 + x Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(-1)^(n - k) (n - k)^k/k!, {k, 0, n}], {n, 24}]]
Join[{1}, Table[Sum[(-1)^k k! k^(n - k) Binomial[n, k], {k, 0, n}], {n, 24}]]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 07 2018
STATUS
approved