OFFSET
1,3
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..400
Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830.
FORMULA
E.g.f.: x^3*exp(-x)/(2*(1-x)).
D-finite with recurrence (-n+3)*a(n) +n*(n-4)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 06 2023
EXAMPLE
a(3) = 3 because there are exactly 3 odd permutations (of a 3-set) having 1 fixed point, namely: (12), (13), (23).
MATHEMATICA
A145222[n_] := n*Subfactorial[n - 3]*Binomial[n - 1, 2]; Array[A145222, 25] (* Paolo Xausa, Jan 31 2025 *)
PROG
(PARI) x = 'x + O('x^30); Vec(serlaplace(((x^3)*exp(-x))/(2*(1-x)))) \\ Michel Marcus, Apr 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Abdullahi Umar, Oct 09 2008
EXTENSIONS
More terms from Alois P. Heinz, Apr 04 2016
STATUS
approved