login
A145225
Triangle read by rows: T(n,k) is the number of odd permutations (of an n-set) with exactly k fixed points.
6
0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 6, 0, 6, 0, 0, 20, 30, 0, 10, 0, 0, 135, 120, 90, 0, 15, 0, 0, 924, 945, 420, 210, 0, 21, 0, 0, 7420, 7392, 3780, 1120, 420, 0, 28, 0, 0, 66744, 66780, 33264, 11340, 2520, 756, 0, 36, 0, 0
OFFSET
0,8
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830.
FORMULA
T(n,k) = C(n,k) * A000387(n-k).
E.g.f.: x^(k+2) * exp(-x) / (2*k!*(1-x)).
T(n,k) + A145224(n,k) = A008290(n,k). - R. J. Mathar, Jul 06 2023
T(n,k) = (A008290(n,k) - A055137(n,k)) / 2. - Julian Hatfield Iacoponi, Aug 08 2024
EXAMPLE
Triangle starts:
0;
0, 0;
1, 0, 0;
0, 3, 0, 0;
6, 0, 6, 0, 0;
20, 30, 0, 10, 0, 0;
...
MAPLE
A145225 := proc(n, k)
binomial(n, k)*A000387(n-k) ; # re-use code of A000387
end proc:
seq(seq(A145225(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Jul 06 2023
MATHEMATICA
A145225[n_, k_] := Binomial[n, k]*Binomial[n - k, 2]*Subfactorial[n - k - 2];
Table[A145225[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 31 2025 *)
CROSSREFS
Row sums are A001710 for n > 1.
Columns k=0..2 are A000387, A145222, A145223.
Sequence in context: A062688 A067181 A321429 * A332442 A061480 A220692
KEYWORD
nonn,tabl
AUTHOR
Abdullahi Umar, Oct 10 2008
STATUS
approved