login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145228 Scalar product of Atkin polynomial A_n(j) with itself. 0
1, 393120, 69837768000, 12823035496951680, 2373736216018210243200, 440845278818001523478812800, 82005900318446998074736259577600, 15268862972256859647625489731573696000, 2844591309372269068312979404560741985117440, 530152412660802854746312319621380805036392771200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..9.

M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998

FORMULA

For formula see Maple code.

From Vaclav Kotesovec, Apr 07 2018: (Start)

For n > 0, a(n) = 2^(8*n) * 3^(6*n) * (12*n - 7) * Gamma(2*n - 7/6) * Gamma(2*n + 7/6) / (Pi * Gamma(2*n) * Gamma(2*n + 1)).

a(n) ~ 2^(8*n + 1) * 3^(6*n + 1) / Pi. (End)

MAPLE

af:=proc(a, n) mul(a+i, i=0..n-1); end; Aip:=n->(-12)^(6*n+1)*af(-1/12, n)*af(5/12, n)*af(7/12, n)*af(13/12, n)/((2*n-1)!*(2*n)!);

MATHEMATICA

Flatten[{1, Table[FullSimplify[2^(8*n) * 3^(6*n) * (12*n - 7) * Gamma[2*n - 7/6] * Gamma[2*n + 7/6] / (Pi * Gamma[2*n] * Gamma[2*n + 1])], {n, 1, 15}]}] (* Vaclav Kotesovec, Apr 07 2018 *)

CROSSREFS

Sequence in context: A017588 A157741 A157623 * A204628 A171439 A210162

Adjacent sequences:  A145225 A145226 A145227 * A145229 A145230 A145231

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 09:54 EDT 2021. Contains 343788 sequences. (Running on oeis4.)