login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145231
a(n) = Fibonacci(4^n).
9
1, 3, 987, 10610209857723, 141693817714056513234709965875411919657707794958199867
OFFSET
0,2
COMMENTS
This sequence has the property that a(n+1) is divisible by a(n). Conjecture: each prime divisor can occur only once (i.e., all terms are squarefree). - Artur Jasinski, Oct 05 2008
LINKS
FORMULA
a(n) = (G^(4^n) - (1-G)^(4^n) )/sqrt(5) where G = (1 + sqrt 5)/2 = A001622.
a(n) = round( sqrt(4/5) *cosh( 4^n*arccosh (sqrt(5/4)) )).
a(n)= A000045(A000302(n)). - Michel Marcus, Nov 07 2013
From Peter Bala, Nov 11 2022: (Start)
a(n+1) = a(n)*(5*a(n)^2 + 2)*sqrt(5*a(n)^2 + 4) for n >= 1.
a(n) == 3 (mod 4) for n >= 1.
a(n+1) == a(n) (mod 2^(2*n+1)).
A341601(n) == a(n) (mod 2^n) for n >= 2.
In the ring of 2-adic integers, the sequence {Fibonacci(4^n)} converges to the 2-adic integer A341603. (End)
MAPLE
a := proc(n) option remember; if n = 1 then 3 else a(n-1)*(5*a(n-1)^2 + 2)*sqrt(5*a(n-1)^2 + 4) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 14 2022
MATHEMATICA
G = (1 + Sqrt[5])/2; Table[Expand[(G^(4^n) - (1 - G)^(4^n))/Sqrt[5]], {n, 1, 6}]
Table[Round[(4/5)^(1/2)*Cosh[4^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 7}]
Fibonacci[4^Range[5]] (* Harvey P. Dale, Mar 28 2012 *)
CROSSREFS
Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), this sequence (k=4), A145232 (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).
Sequence in context: A151585 A286525 A030250 * A318480 A358269 A167069
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 05 2008
STATUS
approved