login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = hypergeometric([n, -n], [], -1).
6

%I #47 Dec 03 2023 09:10:19

%S 1,2,11,106,1457,25946,566827,14665106,438351041,14862109042,

%T 563501581931,23624177026682,1085079390005041,54185293223976266,

%U 2922842896378005707,169366580127359119906,10492171932362920604417,691986726674000405367266,48408260338825019327539531

%N a(n) = hypergeometric([n, -n], [], -1).

%C From _Peter Bala_, Mar 12 2023: (Start)

%C We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 1, 1, 4, 2, 1, 2, 4, 1, 1, 4, 2, ...], apparently a periodic sequence of period 7.

%C More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x))*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1/(1 - x), G(x) = 1. Cf. A361281. (End)

%H Vincenzo Librandi, <a href="/A278070/b278070.txt">Table of n, a(n) for n = 0..370</a>

%F a(-n) = a(n).

%F a(n) = n! [x^n] exp((1-h(x))/2)*(1+h(x))/(2*h(x)) with h(x) = sqrt(1-4*x).

%F a(n) = ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3) for n>=2.

%F a(n) ~ 2^(2*n-1/2) * n^n / exp(n-1/2). - _Vaclav Kotesovec_, Nov 10 2016

%F a(n) = n!*Sum_{i=0..n}(binomial(2*n-i-1,n-i)/i!). - _Vladimir Kruchinin_, Nov 23 2016

%F a(n) = n! * [x^n] exp(x)/(1 - x)^n. - _Ilya Gutkovskiy_, Sep 21 2017

%p a := n -> hypergeom([n, -n], [], -1): seq(simplify(a(n)), n=0..18);

%p # Alternatively:

%p a := proc(n) option remember; `if`(n<2, n+1,

%p ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3)) end:

%p seq(a(n), n=0..18);

%t Table[HypergeometricPFQ[{n, -n}, {}, -1], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 10 2016 *)

%o (Sage)

%o def a():

%o a, b, c, d, h, e = 1, 2, 1, 8, 4, 0

%o yield a

%o while True:

%o yield b

%o e = c; c += 2

%o a, b = b, (c*a + h*b)//e

%o d += 16; h += d

%o A278070 = a()

%o [next(A278070) for _ in range(19)]

%o (Maxima)

%o a(n):=n!*sum(binomial(2*n-i-1,n-i)/i!,i,0,n); /* _Vladimir Kruchinin_, Nov 23 2016 */

%Y Cf. A278069, A278071, A361281.

%K nonn,easy

%O 0,2

%A _Peter Luschny_, Nov 10 2016