OFFSET
0,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..1024
FORMULA
a(m*2^n-1) = a(m-1)*2^n for n>=0, m>=1:
a(2^n-1) = 2^n, a(3*2^n-1) = 5*2^n, a(5*2^n-1) = 14*2^n, for n>=0.
a(m) is odd iff m = 2*4^n (n>=0) or m=0.
a(2*4^n) == 5 (mod 8) for n>=0.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 4*x^3 + 14*x^4 + 10*x^5 + 28*x^6 + 8*x^7 + 69*x^8 + 28*x^9 + 116*x^10 + 20*x^11 + 252*x^12 +...
where
A(x)^(1/2) = 1 + x + 2*x^2 + 5*x^4 + 4*x^6 + 14*x^8 + 10*x^10 + 28*x^12 + 116*x^20 + 20*x^22 + 252*x^24 +...
A(x)^2 = 1 + 4*x + 14*x^2 + 28*x^3 + 69*x^4 + 116*x^5 + 252*x^6 + 340*x^7 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, #binary(n+1), A=(subst(A, x, x^2) + x +x*O(x^n))^2); polcoeff(A, n, x)}
for(n=0, 64, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 02 2013
STATUS
approved