login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079053
Recamán Fibonacci variation: a(1)=1; a(2)=2; for n > 2, a(n) = a(n-1)+a(n-2)-F(n) if that number is positive and not already in the sequence, otherwise a(n) = a(n-1)+a(n-2)+F(n) where F(n) denotes the n-th Fibonacci number.
8
1, 2, 5, 4, 14, 10, 11, 42, 19, 6, 114, 264, 145, 32, 787, 1806, 996, 218, 5395, 12378, 6827, 1494, 36978, 84840, 46793, 10240, 253451, 581502, 320724, 70186, 1737179, 3985674, 2198275, 481062, 11906802, 27318216, 15067201, 3297248, 81610435
OFFSET
1,2
COMMENTS
Starting with other initial values a(1)=x a(2)=y gives the same kind of recurrence relations.
LINKS
FORMULA
For n>2, if n==0 or 2 (mod 4) a(n)=2*a(n-1)-a(n-2)-a(n-4); if n==1 or 3 (mod 4) a(n)=a(n-2)+2*a(n-3)+a(n-4) lim n ->infinity a(4n)/a(4n-1)=2.29433696806047607330083539....; lim n ->infinity a(4n-1)/a(4n-2)=24.7510757456062014116731647..; lim n ->infinity a(4n-2)/a(4n-3)=0.218836132868832627648170038...; lim n ->infinity a(4n-3)/a(4n-4)=0.551544105222898180785441647...
Empirical g.f.: x*(26*x^10+68*x^8+6*x^7-4*x^6+16*x^5-12*x^4-5*x^2-x-1) / ((x^2+x-1)*(x^4+3*x^2+1)). - Colin Barker, Jun 26 2013
EXAMPLE
a(10)=6 because a(9)+a(8)-F(10)=19+42-55=6 and 6 is not already in the sequence. a(11)=42 because a(10)+a(9)-F(11)=6+19-89 < 0 then a(11)=6+19+89=114.
MATHEMATICA
a[1] = 1; a[2] = 2; a[n_] := a[n] = (an = a[n-1] + a[n-2] - Fibonacci[n]; If[an > 0 && ! MemberQ[Array[a, n-1], an], an, a[n-1] + a[n-2] + Fibonacci[n]]); Table[a[n], {n, 1, 39}] (* Jean-François Alcover, Jun 18 2012 *)
PROG
(PARI) m=200; a=vector(m); a[1]=1; a[2]=2; for(n=3, m, a[n]=if(n<0, 0, if(abs(sign(a[n-1]+a[n-2]-fibonacci(n))-1)+setsearch(Set(vector(n-1, i, a[i])), a[n-1]+a[n-2]-fibonacci(n)), a[n-1]+a[n-2]+fibonacci(n), a[n-1]+a[n-2]-fibonacci(n)))); a - corrected by Colin Barker, Jun 26 2013
(Haskell)
import Data.Set (Set, fromList, notMember, insert)
a079053 n = a079053_list !! (n-1)
a079053_list = 1 : 2 : r (fromList [1, 2]) 1 1 1 2 where
r :: Set Integer -> Integer -> Integer -> Integer -> Integer -> [Integer]
r s i j x y = if v > 0 && v `notMember` s
then v : r (insert v s) j fib y v
else w : r (insert w s) j fib y w where
fib = i + j
v = x + y - fib
w = x + y + fib
for_bFile = take 1000 a079053_list -- Reinhard Zumkeller, Mar 14 2011
CROSSREFS
Cf. A005132.
Sequence in context: A102468 A252668 A225046 * A224272 A189942 A251554
KEYWORD
nice,nonn
AUTHOR
Benoit Cloitre, Feb 02 2003
STATUS
approved