login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Recamán Fibonacci variation: a(1)=1; a(2)=2; for n > 2, a(n) = a(n-1)+a(n-2)-F(n) if that number is positive and not already in the sequence, otherwise a(n) = a(n-1)+a(n-2)+F(n) where F(n) denotes the n-th Fibonacci number.
8

%I #30 Feb 21 2024 10:53:34

%S 1,2,5,4,14,10,11,42,19,6,114,264,145,32,787,1806,996,218,5395,12378,

%T 6827,1494,36978,84840,46793,10240,253451,581502,320724,70186,1737179,

%U 3985674,2198275,481062,11906802,27318216,15067201,3297248,81610435

%N Recamán Fibonacci variation: a(1)=1; a(2)=2; for n > 2, a(n) = a(n-1)+a(n-2)-F(n) if that number is positive and not already in the sequence, otherwise a(n) = a(n-1)+a(n-2)+F(n) where F(n) denotes the n-th Fibonacci number.

%C Starting with other initial values a(1)=x a(2)=y gives the same kind of recurrence relations.

%H Reinhard Zumkeller, <a href="/A079053/b079053.txt">Table of n, a(n) for n = 1..1000</a>

%F For n>2, if n==0 or 2 (mod 4) a(n)=2*a(n-1)-a(n-2)-a(n-4); if n==1 or 3 (mod 4) a(n)=a(n-2)+2*a(n-3)+a(n-4) lim n ->infinity a(4n)/a(4n-1)=2.29433696806047607330083539....; lim n ->infinity a(4n-1)/a(4n-2)=24.7510757456062014116731647..; lim n ->infinity a(4n-2)/a(4n-3)=0.218836132868832627648170038...; lim n ->infinity a(4n-3)/a(4n-4)=0.551544105222898180785441647...

%F Empirical g.f.: x*(26*x^10+68*x^8+6*x^7-4*x^6+16*x^5-12*x^4-5*x^2-x-1) / ((x^2+x-1)*(x^4+3*x^2+1)). - _Colin Barker_, Jun 26 2013

%e a(10)=6 because a(9)+a(8)-F(10)=19+42-55=6 and 6 is not already in the sequence. a(11)=42 because a(10)+a(9)-F(11)=6+19-89 < 0 then a(11)=6+19+89=114.

%t a[1] = 1; a[2] = 2; a[n_] := a[n] = (an = a[n-1] + a[n-2] - Fibonacci[n]; If[an > 0 && ! MemberQ[Array[a, n-1], an], an, a[n-1] + a[n-2] + Fibonacci[n]]); Table[a[n], {n, 1, 39}] (* _Jean-François Alcover_, Jun 18 2012 *)

%o (PARI) m=200; a=vector(m); a[1]=1; a[2]=2; for(n=3, m, a[n]=if(n<0, 0, if(abs(sign(a[n-1]+a[n-2]-fibonacci(n))-1)+setsearch(Set(vector(n-1, i, a[i])), a[n-1]+a[n-2]-fibonacci(n)), a[n-1]+a[n-2]+fibonacci(n), a[n-1]+a[n-2]-fibonacci(n)))); a - corrected by _Colin Barker_, Jun 26 2013

%o (Haskell)

%o import Data.Set (Set, fromList, notMember, insert)

%o a079053 n = a079053_list !! (n-1)

%o a079053_list = 1 : 2 : r (fromList [1,2]) 1 1 1 2 where

%o r :: Set Integer -> Integer -> Integer -> Integer -> Integer -> [Integer]

%o r s i j x y = if v > 0 && v `notMember` s

%o then v : r (insert v s) j fib y v

%o else w : r (insert w s) j fib y w where

%o fib = i + j

%o v = x + y - fib

%o w = x + y + fib

%o for_bFile = take 1000 a079053_list -- _Reinhard Zumkeller_, Mar 14 2011

%Y Cf. A005132.

%K nice,nonn

%O 1,2

%A _Benoit Cloitre_, Feb 02 2003