OFFSET
1,4
COMMENTS
Cumulative sums are: 1, 0, -1, 1, 1, -1, 1, 2, -2, -1, 3, -1, -2, 4, 1, -5, ...-5, 2, 5, -5, -1, 9, -3, -9, 9, 4, -14, 6, 14, -16, -6, 23. Conjecture: limit_[n goes to infinity] (cumulative sum of A112274)/n = 0. - Jonathan Vos Post, Sep 01 2005
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 53
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
S. Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328.
S. Cooper, Level 10 analogues of Ramanujan's series for 1/pi, J. Ramanujan Math. Soc., 27 (2012), 75-92. See p. 77.
FORMULA
Euler transform of period 10 sequence [ -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, ...].
Expansion of x * (f(-x^2, -x^8) * f(-x, -x^9)) / (f(-x^4, -x^6) * f(-x^3, -x^7)) in powers of x where f(,) is Ramanujan's two-variable theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u + v)^2 - v * (1 - u^2).
G.f.: x * Product_{k>0} (1 - x^(10*k - 1)) * (1 - x^(10*k - 2)) * (1 - x^(10*k - 8)) * (1 - x^(10*k - 9)) / ((1 - x^(10*k - 3)) * (1 - x^(10*k - 4)) * (1 - x^(10*k - 6)) * (1 - x^(10*k - 7))).
Given g.f. k = A(x) then k * ((1 - k) / (1 + k))^2 = B(x), k^2 * ((1 + k) / (1 - k)) = B(x^2) where B(x) = g.f. A078905.
a(n) = A112803(n) unless n=0. - Michael Somos, Jul 08 2012
Convolution inverse is A214341. - Michael Somos, Jul 12 2012
k(q) = (r(q^2) - r(q)^2)/(r(q^2) + r(q)^2). - Seiichi Manyama, Apr 21 2017
EXAMPLE
x - x^2 - x^3 + 2*x^4 - 2*x^6 + 2*x^7 + x^8 - 4*x^9 + x^10 + 4*x^11 + ...
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( prod( k=1, n, (1 - x^k + A)^[0, 1, 1, -1, -1, 0, -1, -1, 1, 1][k%10 + 1]), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 30 2005
STATUS
approved