login
A124242
Expansion of a parametrization of Ramanujan's continued fraction.
3
1, -1, 1, 1, -2, 0, 2, -2, -1, 4, -1, -4, 4, 1, -6, 3, 6, -7, -3, 10, -4, -10, 12, 6, -18, 5, 18, -20, -8, 30, -10, -29, 31, 12, -46, 17, 44, -47, -20, 68, -23, -66, 72, 31, -104, 33, 98, -107, -44, 156, -51, -144, 154, 61, -220, 75, 206, -220, -90, 310, -104, -290, 312, 131, -442, 143, 408, -437, -178, 618, -202
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 53
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 10 sequence [ -1, 1, 2, -1, -2, -1, 2, 1, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - (2-u) * (2 - (2-u) * (2-v)).
Given g.f. A(x) =: k, then B(x) = (1-k) * (k / (2-k))^2, B(x^2) = (1-k)^2 * ((2-k) / k) where B(x) is the g.f. for A078905.
Expansion of f(-x^5, -x^10)^3 / (f(x, x^4) * f(-x^3, -x^7)^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 06 2016
G.f.: Product_{k>0} ((1 - x^(10k-5)) / ((1 - x^(10k-3)) * (1 - x^(10k-7))))^2 * (1 - x^(10k-1)) * (1 - x^(10k-4)) * (1 - x^(10k-6)) * (1 - x^(10k-9) / ((1-x^(10k-2)) * (1-x^(10k-8))).
-a(n) = A112274(n) unless n = 0.
G.f.: 1 - r(q) * r(q^2)^2 where r() is the Rogers-Ramanujan continued fraction. - Seiichi Manyama, Apr 18 2017
EXAMPLE
G.f. = 1 - x + x^2 + x^3 - 2*x^4 + 2*x^6 - 2*x^7 - x^8 + 4*x^9 - x^10 - 4*x^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 1, -1, -2, 1, 2, 1, -2, -1, 1, 0}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Jan 06 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod(k=1, n, (1 - x^k + A)^[0, 1, -1, -2, 1, 2, 1, -2, -1, 1][k%10+1]), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 27 2006
STATUS
approved