OFFSET
0,5
COMMENTS
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 53
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 10 sequence [ -1, 1, 2, -1, -2, -1, 2, 1, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - (2-u) * (2 - (2-u) * (2-v)).
Given g.f. A(x) =: k, then B(x) = (1-k) * (k / (2-k))^2, B(x^2) = (1-k)^2 * ((2-k) / k) where B(x) is the g.f. for A078905.
Expansion of f(-x^5, -x^10)^3 / (f(x, x^4) * f(-x^3, -x^7)^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 06 2016
G.f.: Product_{k>0} ((1 - x^(10k-5)) / ((1 - x^(10k-3)) * (1 - x^(10k-7))))^2 * (1 - x^(10k-1)) * (1 - x^(10k-4)) * (1 - x^(10k-6)) * (1 - x^(10k-9) / ((1-x^(10k-2)) * (1-x^(10k-8))).
-a(n) = A112274(n) unless n = 0.
G.f.: 1 - r(q) * r(q^2)^2 where r() is the Rogers-Ramanujan continued fraction. - Seiichi Manyama, Apr 18 2017
EXAMPLE
G.f. = 1 - x + x^2 + x^3 - 2*x^4 + 2*x^6 - 2*x^7 - x^8 + 4*x^9 - x^10 - 4*x^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 1, -1, -2, 1, 2, 1, -2, -1, 1, 0}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Jan 06 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod(k=1, n, (1 - x^k + A)^[0, 1, -1, -2, 1, 2, 1, -2, -1, 1][k%10+1]), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 27 2006
STATUS
approved