|
|
A124239
|
|
a(n) = Sum_{k=1..n} Sum_{m=1..n} (2*k - 1)^m.
|
|
3
|
|
|
1, 14, 197, 3704, 90309, 2704470, 95856025, 3921108576, 181756280697, 9413656622446, 538727822713277, 33757715581666296, 2298714540642445405, 169016703698449309846, 13345320616706684277361, 1126219424250538393789824, 101160070702700567996590513, 9636001314414804672487492878
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(3) = 197 and a(11) = 538727822713277 are primes.
p divides a(p+1) for primes p > 3.
a(2*k-1) is odd. a(2*k) is even. a(2^k) is divisible by 2^(2*k - 1) for k > 0.
Numbers n such that a(n) is divisible by n are listed in A124240.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..n} Sum_{m=1..n} (2*k - 1)^m.
a(n) = n + Sum_{k=2..n} (2*k - 1)*((2*k - 1)^n - 1)/(2*(k - 1)).
|
|
MATHEMATICA
|
Table[Sum[(2k-1)^m, {k, 1, n}, {m, 1, n}], {n, 1, 20}]
|
|
PROG
|
(PARI) a(n) = sum(k=1, n, sum(m=1, n, (2*k - 1)^m)); \\ Michel Marcus, Apr 24 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|