login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124236
a(n) = denominator of (Sum_{k=1..n} H(2k)(2k)!/(k!(k+n+1)!) = Sum_{k=0..n-1} H(n-k)(2k)!/ (k!(k+n+1)!)), where H(k) = Sum_{j=1..k} 1/j (i.e., the k-th harmonic number).
2
2, 3, 144, 30240, 4725, 7983360, 108972864000, 8072064000, 453682944000, 403179783552000, 1250891123328000, 179527894020034560000, 42009527200688087040000, 9335450489041797120000
OFFSET
1,1
LINKS
MATHEMATICA
f[n_] := Denominator[Sum[HarmonicNumber[2k]*Factorial[2k]/(Factorial[k]*Factorial[k + n + 1]), {k, n}]]; Table[f[n], {n, 16}] (* Ray Chandler, Oct 23 2006 *)
PROG
(PARI) H(n)={ if(n==0, 0, sum(k=1, n, 1/k)) ; }
A124236(n)={ denominator(sum(k=1, n, H(2*k)*(2*k)!/k!/(k+n+1)!)) ; }
A124236alt(n)={ denominator(sum(k=0, n-1, H(n-k)*(2*k)!/k!/(k+n+1)!)) ; } \\ R. J. Mathar, Oct 23 2006
CROSSREFS
Cf. A124235 (numerators).
Sequence in context: A234999 A254787 A042073 * A371272 A115231 A371231
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Oct 22 2006
EXTENSIONS
Extended by R. J. Mathar and Ray Chandler, Oct 23 2006
STATUS
approved