|
|
A041085
|
|
Denominators of continued fraction convergents to sqrt(50).
|
|
15
|
|
|
1, 14, 197, 2772, 39005, 548842, 7722793, 108667944, 1529074009, 21515704070, 302748930989, 4260000737916, 59942759261813, 843458630403298, 11868363584907985, 167000548819115088, 2349876047052519217, 33065265207554384126, 465263588952813896981
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 14's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,14} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
Also called the 14-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 14 kinds of squares available. (End)
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1+sqrt(2))^(3*n)*(1/2+7*sqrt(2)/20)+(1-sqrt(2))^(3*n)*(1/2-7*sqrt(2)/20).
a(n) = Sum_{i=0..n} Sum_{j=0..n} (n!/(i!j!(n-i-j)!)*A000129(2n-i)/5. (End)
a(n) = F(n, 14), the n-th Fibonacci polynomial evaluated at x=14. - T. D. Noe, Jan 19 2006
a(n) = 14*a(n-1) + a(n-2); a(0)=1, a(1)=14.
G.f.: 1/(1-14*x-x^2). (End)
a(n) = ((7+5*sqrt(2))^(n+1) - (7-5*sqrt(2))^(n+1))/(10*sqrt(2)). - Gerry Martens, Jul 11 2015
|
|
MAPLE
|
with(combinat): seq(fibonacci(3*n+3, 2)/5, n=0..17); # Zerinvary Lajos, Apr 20 2008
|
|
MATHEMATICA
|
|
|
PROG
|
(Magma) I:=[1, 14]; [n le 2 select I[n] else 14*Self(n-1) +Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 17 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,cofr,easy,frac
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|