The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041084 Numerators of continued fraction convergents to sqrt(50). 2
 7, 99, 1393, 19601, 275807, 3880899, 54608393, 768398401, 10812186007, 152139002499, 2140758220993, 30122754096401, 423859315570607, 5964153172084899, 83922003724759193, 1180872205318713601, 16616132878186749607, 233806732499933208099, 3289910387877251662993 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (14,1). FORMULA a(n) = 14*a(n-1)+a(n-2), n>1 ; a(0)=7, a(1)=99 . G.f.: (7+x)/(1-14*x-x^2). - Philippe Deléham, Nov 21 2008 a(n) = (5/2)*sqrt(2)*{[7+5*sqrt(2)]^n-[7-5*sqrt(2)]^n}+(7/2)*{[7+5*sqrt(2)]^n +[7-5*sqrt(2)]^n}, with n>=0. - Paolo P. Lava, Nov 28 2008 MATHEMATICA Numerator[Convergents[Sqrt[50], 30]] (* or *) LinearRecurrence[{14, 1}, {7, 99}, 30] (* Harvey P. Dale, Aug 18 2013 *) CoefficientList[Series[(7 + x)/(1 - 14 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2013 *) CROSSREFS Cf. A010503, A041085. Sequence in context: A092818 A238472 A041087 * A115066 A340887 A272957 Adjacent sequences: A041081 A041082 A041083 * A041085 A041086 A041087 KEYWORD nonn,cofr,frac,easy AUTHOR N. J. A. Sloane. EXTENSIONS More terms from Colin Barker, Nov 04 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 15:36 EST 2023. Contains 367693 sequences. (Running on oeis4.)