OFFSET
-1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 12 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Aug 07 2014
A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma_1(10). [Yang 2004] - Michael Somos, Aug 07 2014
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..10000
S. Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.
FORMULA
Expansion of (1/x) * (f(-x^4, -x^6) * f(-x^3, -x^7)) / (f(-x^2, -x^8) * f(-x, -x^9)) in powers of x where f(,) is Ramanujan's two-variable theta function.
Euler transform of period 10 sequence [ 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u + v)^2 - v * (u^2 - 1).
G.f.: (1/x) * Product_{k>0} (1 - x^(10*k - 3)) * (1 - x^(10*k - 4)) * (1 - x^(10*k - 6)) * (1 - x^(10*k - 7)) /((1 - x^(10*k - 1)) * (1 - x^(10*k - 2)) * (1 - x^(10*k - 8)) * (1 - x^(10*k - 9))).
EXAMPLE
G.f. = 1/q + 1 + 2*q + q^2 + q^3 - q^5 - 2*q^6 - 2*q^7 - q^8 + q^9 + 3*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q Product[(1 - q^k)^{-1, -1, 1, 1, 0, 1, 1, -1, -1, 0}[[Mod[k, 10, 1]]], {k, n + 1}], {q, 0, n}]; (* Michael Somos, Aug 07 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( prod( k=1, n, (1 - x^k + A)^[0, -1, -1, 1, 1, 0, 1, 1, -1, -1][k%10 + 1]), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 12 2012
STATUS
approved