login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214344
Number of 1's in the first 10^n binary digits in the stream of prime numbers in base 2.
1
1, 8, 69, 593, 5723, 56090, 541794, 5369528, 53803123, 527428642, 5249946808, 52800311682
OFFSET
0,2
COMMENTS
Consider the stream (concatenation) of binary digits of primes in the MSB-first order featured in A191232. a(n) is the total count of 1's in the first 10^n of zeros and ones in this stream.
The complementary count of 0's is 10^n - a(n) = 0, 2, 31, 407, 4277, 43910, 458206, ... - R. J. Mathar, Jul 16 2012
MAPLE
A214344 := proc()
local stre, len, ct, p ;
stre := [] ;
len := 2 ;
ct := 1 ;
p := 2 ;
while true do
if nops(stre) = 0 then
p := nextprime(p) ;
stre := convert(p, base, 2) ;
end if;
if op(-1, stre) = 1 then
ct := ct+ 1;
end if;
stre := subsop(-1=NULL, stre) ;
len := len+1 ;
if ilog10(len-1) <> ilog10(len) then
print(ct) ;
end if;
end do:
end proc: # R. J. Mathar, Jul 14 2012
MATHEMATICA
pow = 1; sum1 = 0; sum2 = 0; p = 2; seq={}; k = 0; Do[d = IntegerDigits[p, 2]; sum1 += Count[d, 1]; sum2 += Length[d]; k++; If[sum2 >= pow, del = sum2 - pow; term = sum1 - Count[d[[-del ;; -1]], 1]; AppendTo[seq, term]; pow *= 10]; p = NextPrime[p], {10^4}]; seq (* Amiram Eldar, May 10 2019 *)
PROG
(Python)
from sympy import nextprime
from itertools import islice
def bgen(p=2):
while True: yield from (int(b) for b in bin(p)[2:]); p = nextprime(p)
def a(n): return sum(islice(bgen(), 10**n))
print([a(n) for n in range(7)]) # Michael S. Branicky, Jul 03 2022
CROSSREFS
Cf. A095375.
Sequence in context: A297633 A152279 A015575 * A228421 A152109 A222064
KEYWORD
nonn,more,base
AUTHOR
EXTENSIONS
a(9)-a(11) from Amiram Eldar, May 10 2019
STATUS
approved