login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152109
a(n) = ((8+sqrt(5))^n + (8-sqrt(5))^n)/2.
1
1, 8, 69, 632, 6041, 59368, 593469, 5992792, 60870001, 620345288, 6334194549, 64746740792, 662230374281, 6775628281768, 69338460425709, 709653298187032, 7263483605875681, 74346193100976008, 760993556868950949
OFFSET
0,2
FORMULA
From Philippe Deléham, Nov 26 2008: (Start)
a(n) = 16*a(n-1) - 59*a(n-2), n > 1; a(0)=1, a(1)=8.
G.f.: (1-8*x)/(1-16*x+59*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*8^(2*k)*5^(n-k))/8^n. (End)
MATHEMATICA
LinearRecurrence[{16, -59}, {1, 8}, 30] (* Harvey P. Dale, Dec 18 2011 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r5>:=NumberField(x^2-5); S:=[ ((8+r5)^n+(8-r5)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 26 2008
CROSSREFS
Sequence in context: A015575 A214344 A228421 * A222064 A317096 A327606
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Nov 26 2008
STATUS
approved