login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152108
a(n) = ((7+sqrt(5))^n + (7-sqrt(5))^n)/2.
1
1, 7, 54, 448, 3896, 34832, 316224, 2894528, 26609536, 245174272, 2261620224, 20875015168, 192738922496, 1779844247552, 16437306875904, 151809149370368, 1402086588645376, 12949609668739072, 119602725461950464, 1104655331042787328, 10202654714273202176
OFFSET
0,2
FORMULA
From Philippe Deléham, Nov 26 2008: (Start)
a(n) = 14*a(n-1) - 44*a(n-2), n > 1; a(0)=1, a(1)=7.
G.f.: (1-7*x)/(1-14*x+44*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*7^(2*k)*5^(n-k))/7^n. (End)
MATHEMATICA
With[{srt5=Sqrt[5]}, Simplify/@Table[((7+srt5)^n+(7-srt5)^n)/2, {n, 0, 20}]] (* or *) LinearRecurrence[{14, -44}, {1, 7}, 20] (* Harvey P. Dale, Jan 16 2012 *)
CoefficientList[Series[(1 - 7 x) / (1 - 14 x + 44 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 04 2018 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r5>:=NumberField(x^2-5); S:=[ ((7+r5)^n+(7-r5)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 26 2008
(Magma) I:=[1, 7]; [n le 2 select I[n] else 14*Self(n-1)-44*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 04 2018
CROSSREFS
Sequence in context: A116472 A015562 A243670 * A093742 A291703 A014509
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Nov 26 2008
STATUS
approved