login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152108 a(n) = ((7+sqrt(5))^n + (7-sqrt(5))^n)/2. 1
1, 7, 54, 448, 3896, 34832, 316224, 2894528, 26609536, 245174272, 2261620224, 20875015168, 192738922496, 1779844247552, 16437306875904, 151809149370368, 1402086588645376, 12949609668739072, 119602725461950464, 1104655331042787328, 10202654714273202176 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (14, -44).

FORMULA

From Philippe Deléham, Nov 26 2008: (Start)

a(n) = 14*a(n-1) - 44*a(n-2), n > 1; a(0)=1, a(1)=7.

G.f.: (1-7*x)/(1-14*x+44*x^2).

a(n) = (Sum_{k=0..n} A098158(n,k)*7^(2*k)*5^(n-k))/7^n. (End)

MATHEMATICA

With[{srt5=Sqrt[5]}, Simplify/@Table[((7+srt5)^n+(7-srt5)^n)/2, {n, 0, 20}]] (* or *) LinearRecurrence[{14, -44}, {1, 7}, 20] (* Harvey P. Dale, Jan 16 2012 *)

CoefficientList[Series[(1 - 7 x) / (1 - 14 x + 44 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 04 2018 *)

PROG

(MAGMA) Z<x>:= PolynomialRing(Integers()); N<r5>:=NumberField(x^2-5); S:=[ ((7+r5)^n+(7-r5)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 26 2008

(MAGMA) I:=[1, 7]; [n le 2 select I[n] else 14*Self(n-1)-44*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 04 2018

CROSSREFS

Sequence in context: A116472 A015562 A243670 * A093742 A291703 A014509

Adjacent sequences:  A152105 A152106 A152107 * A152109 A152110 A152111

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008

EXTENSIONS

Extended beyond a(6) by Klaus Brockhaus, Nov 26 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 4 01:48 EST 2021. Contains 341773 sequences. (Running on oeis4.)