The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214339 Let S_m = concatenation of words 2(1)_2, 2(2)_2, 2(3)_2, ..., 2(m)_2, where (i)_2 denotes the binary expansion of i; then sequence is S_1, S_2, S_3, ... 2
 2, 1, 2, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Daniel Goc, Luke Schaeffer and Jeffrey Shallit, The Subword Complexity of k-Automatic Sequences is k-Synchronized, arXiv 1206.5352, Jun 28 2012. See Example 3. EXAMPLE We have S_1 = 2 1, S_2 = 2 1, 2 1 0, S_3 = 2 1, 2 1 0, 2 1 1, S_4 = 2 1, 2 1 0, 2 1 1, 2 1 0 0, ... so the sequence begins 2 1, 2 1 2 1 0, 2 1 2 1 0 2 1 1, 2 1 2 1 0 2 1 1 2 1 0 0, ... CROSSREFS Sequence in context: A221169 A212212 A212213 * A129174 A129175 A334377 Adjacent sequences:  A214336 A214337 A214338 * A214340 A214341 A214342 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 28 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 04:14 EDT 2022. Contains 354985 sequences. (Running on oeis4.)