|
|
A214339
|
|
Let S_m = concatenation of words 2(1)_2, 2(2)_2, 2(3)_2, ..., 2(m)_2, where (i)_2 denotes the binary expansion of i; then sequence is S_1, S_2, S_3, ...
|
|
2
|
|
|
2, 1, 2, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..126.
Daniel Goc, Luke Schaeffer and Jeffrey Shallit, The Subword Complexity of k-Automatic Sequences is k-Synchronized, arXiv 1206.5352, Jun 28 2012. See Example 3.
|
|
EXAMPLE
|
We have
S_1 = 2 1,
S_2 = 2 1, 2 1 0,
S_3 = 2 1, 2 1 0, 2 1 1,
S_4 = 2 1, 2 1 0, 2 1 1, 2 1 0 0,
... so the sequence begins
2 1, 2 1 2 1 0, 2 1 2 1 0 2 1 1, 2 1 2 1 0 2 1 1 2 1 0 0, ...
|
|
CROSSREFS
|
Sequence in context: A221169 A212212 A212213 * A129174 A129175 A334377
Adjacent sequences: A214336 A214337 A214338 * A214340 A214341 A214342
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Jul 28 2012
|
|
STATUS
|
approved
|
|
|
|