The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221169 The infinite generalized Fibonacci word p^[5]. 5
0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 2, 3, 2, 3, 2, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,7
LINKS
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
MAPLE
# sigma01f defined in A221166
A221169 := proc(n)
sigma01f(n, 5) ;
end proc: # R. J. Mathar, Jul 09 2013
MATHEMATICA
fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]];
fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[Fn] >= n + 1 && Length[Fn] > i + 3, Return[Fn[[n + 1]]]]]];
fmorph[n_, i_] := If[fibonni[n, i] == 0, 2, 0];
sigma1f[n_, i_] := If[n == 0, 1, 1 + Mod[Sum[fmorph[j, i], {j, 0, n - 1}], 4]];
sigma01f[n_, i_] := If[n == 0, 0, Mod[Sum[sigma1f[j, i], {j, 0, n - 1}], 4]]; a[n_] := sigma01f[n, 5]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 30 2017, after R. J. Mathar *)
CROSSREFS
Sequence in context: A337736 A047885 A072731 * A212212 A212213 A214339
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 04 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)