|
|
A214337
|
|
Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a non-orientable surface of type 3/2 (0 <= k <= n).
|
|
5
|
|
|
0, 0, 41, 0, 690, 16925, 0, 7150, 237652, 4306778, 0, 58760, 2518957, 56864524, 910734615, 0, 420182, 22417804, 613687758, 11675167470, 174833737848
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
REFERENCES
|
Arques, Didier; and Giorgetti, Alain. Counting rooted maps on a surface. Theoret. Comput. Sci. 234 (2000), no. 1-2, 255--272. MR1745078 (2001f:05078).
|
|
LINKS
|
Table of n, a(n) for n=0..20.
|
|
EXAMPLE
|
Triangle begins:
0,
0,41,
0,690,16925,
0,7150,237652,4306778,
0,58760,2518957,56864524,910734615,
0,420182,22417804,613687758,11675167470,174833737848,
...
|
|
CROSSREFS
|
Diagonals give A118448, A214335, A213336, A213338.
Cf. A214806.
Sequence in context: A111401 A116101 A167265 * A053342 A297205 A283895
Adjacent sequences: A214334 A214335 A214336 * A214338 A214339 A214340
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
N. J. A. Sloane, Jul 27 2012
|
|
STATUS
|
approved
|
|
|
|