%I
%S 0,0,41,0,690,16925,0,7150,237652,4306778,0,58760,2518957,56864524,
%T 910734615,0,420182,22417804,613687758,11675167470,174833737848
%N Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a nonorientable surface of type 3/2 (0 <= k <= n).
%D Arques, Didier; and Giorgetti, Alain. Counting rooted maps on a surface. Theoret. Comput. Sci. 234 (2000), no. 12, 255272. MR1745078 (2001f:05078).
%e Triangle begins:
%e 0,
%e 0,41,
%e 0,690,16925,
%e 0,7150,237652,4306778,
%e 0,58760,2518957,56864524,910734615,
%e 0,420182,22417804,613687758,11675167470,174833737848,
%e ...
%Y Diagonals give A118448, A214335, A213336, A213338.
%Y Cf. A214806.
%K nonn,tabl
%O 0,3
%A _N. J. A. Sloane_, Jul 27 2012
