OFFSET
1,2
REFERENCES
Bach, E. and Shallit, J. Sect. 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.
H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
Leo Moser, Notes on number theory. III. On the sum of consecutive primes, Canad. Math. Bull. 6 (1963), pp. 159-161.
Eric Weisstein's World of Mathematics, Prime Sums.
FORMULA
EXAMPLE
a(1) = 1 = (2+3)/5 = A007504(2)/5 = 5/5.
a(2) = 2 = (2+3+5)/5 = A007504(3)/5 = 10/5.
a(3) = 20 = (2+3+5+7+11+13+17+19+23)/5 = A007504(9)/5 = 100/5.
a(4) = 32 = (2+3+5+7+11+13+17+19+23+29+31)/5 = A007504(11)/5 = 160/5.
a(5) = 88 = A007504(17)/5 = 440/5.
a(6) = 212 = A007504(25)/5 = 1060/5.
a(7) = 296 = A007504(29)/5 = 1480/5.
a(8) = 344 = A007504(31)/5 = 1720/5.
MATHEMATICA
s = 0; lst = {}; Do[s = s + Prime[n]; If[Mod[s, 5] == 0, AppendTo[lst, s/5]], {n, 250}]; lst (* Robert G. Wilson v, Dec 04 2005 *)
Select[Accumulate[Prime[Range[400]]]/5, IntegerQ] (* Harvey P. Dale, May 03 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 30 2005
EXTENSIONS
More terms from Stefan Steinerberger and Robert G. Wilson v, Dec 04 2005
STATUS
approved