login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A112270
One third of the sum of the first n primes, when an integer.
2
43, 127, 167, 213, 321, 387, 457, 531, 617, 709, 809, 1029, 1149, 1277, 1409, 1863, 2027, 2290, 3397, 3629, 4113, 4367, 4629, 4899, 5179, 5467, 5761, 6063, 6371, 7516, 7864, 8600, 8980, 9368, 10168, 10578, 11856, 12296, 12746, 13204, 13674, 14156
OFFSET
1,1
REFERENCES
Bach, E. and Shallit, J. Sect. 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.
H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
LINKS
Leo Moser, Notes on number theory. III. On the sum of consecutive primes, Canad. Math. Bull. 6 (1963), pp. 159-161.
Eric Weisstein's World of Mathematics, Prime Sums.
FORMULA
{a(n)} = {A007504(k)/3 iff 3 | A007504(k)}. {a(n)} = {(p_1 + p_2 + ... + p_k)/3 iff the sum is an integer}. It is necessary but not sufficient for k to be even.
EXAMPLE
a(1) = 43 = (2+3+5+7+11+13+17+19+23+29)/3 = A007504(10)/3 = 129/3.
a(2) = 127 = A007504(16)/3 = 381/3.
a(3) = 167 = A007504(18)/3 = 501/3.
a(4) = 213 = A007504(20)/3 = 639/3.
a(5) = 321 = A007504(24)/3 = 963/3.
a(6) = 387 = A007504(26)/3 = 1161/3.
MATHEMATICA
s = 0; lst = {}; Do[s = s + Prime[n]; If[Mod[s, 3] == 0, AppendTo[lst, s/3]], {n, 130}]; lst (* Robert G. Wilson v *)
Select[Accumulate[Prime[Range[200]]]/3, IntegerQ] (* Harvey P. Dale, Feb 20 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 30 2005
EXTENSIONS
More terms from Robert G. Wilson v, Nov 30 2005
STATUS
approved