login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113187
Inverse of twin-prime related triangle A111125.
8
1, -3, 1, 10, -5, 1, -35, 21, -7, 1, 126, -84, 36, -9, 1, -462, 330, -165, 55, -11, 1, 1716, -1287, 715, -286, 78, -13, 1, -6435, 5005, -3003, 1365, -455, 105, -15, 1, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1, 352716, -293930, 203490
OFFSET
0,2
COMMENTS
Row sums are (-1)^n*A000984. Diagonal sums are (-1)^n*A014301(n+1). An interesting factorization is (1/sqrt(1+4x)),(sqrt(1+4x)-1)/2)(1/(1+x),x/(1+x)).
The Z-sequence for this Riordan array is [-3,1], and the A-sequence is [1,-2,1]. For the Z- and A-sequence of Riordan arrays see the W. Lang link, with references, under A006232. - Wolfdieter Lang, Oct 18 2012
This triangle appears in the formula (x-1/x)^(2*n+1) = sum(T(n,k)*(x^(2*k+1) - 1/x^(2*k+1)),k=0..n), n >= 0. Proof from the inversion of the formula given in an Oct 18 2012 comment on A111125, due to the Riordan property. - Wolfdieter Lang, Nov 14 2012
LINKS
FORMULA
Riordan array ((sqrt(1+4x)-1)/(2x*sqrt(1+4x)), (1+2x-sqrt(1+4x))/(2x)).
T(n, k)=(-1)^(n-k)*C(2n+1, n+k+1); T(n, k)=sum{j=0..n, (-1)^(n-k)*C(2n-j, n-j)C(j, k)}.
O.g.f. column k: ((2-c(-x))/(1+4*x))*(1-c(-x))^k, with the o.g.f. c(x) of A000108 (Catalan), k>=0. From the Riordan property given above. - Wolfdieter Lang, Oct 17 2012
O.g.f. of the row polynomials R(n,x) = sum(T(n,k)*x^k,k=0..n): ((2-c(-z))/(1+4*z))/(1-x*(1-c(-z))) = 1/((1+4*z)*(x-(1-x)^2*z))*(x+2*x*z-2*z + (1+x)*z*c(-z)), with the o.g.f. c(x) of A000108. - Wolfdieter Lang, Oct 18 2012
EXAMPLE
Triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: -3 1
2: 10 -5 1
3: -35 21 -7 1
4: 126 -84 36 -9 1
5: -462 330 -165 55 -11 1
6: 1716 -1287 715 -286 78 -13 1
7: -6435 5005 -3003 1365 -455 105 -15 1
8: 24310 -19448 12376 -6188 2380 -680 136 -17 1
9: -92378 75582 -50388 27132 -11628 3876 -969 171 -19 1
... Reformatted by Wolfdieter Lang, Oct 17 2012
From Wolfdieter Lang, Oct 18 2012: (Start)
Recurrence from the Z-sequence [-3,1] (see a comment above): T(3,0) = -3*T(2,0) + 1*T(2,1) = -3*10 + (-5) = -35.
Recurrence from the A-sequence [1,-2,1]: T(5,1) = 1*T(4,0) -2*T(4,1) + 1*T(4,2) = 126 -2*(-84) +36 = 330. (End)
CROSSREFS
Sequence in context: A316193 A091042 A111418 * A340554 A057967 A347258
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Oct 17 2005
STATUS
approved