login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340554
T(n, k) = [x^k] hypergeom([-2^n/2, -2^n/2 - 1/2], [1/2], x). Triangle read by rows, T(n, k) for n >= 0.
1
1, 1, 1, 3, 1, 10, 5, 1, 36, 126, 84, 9, 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17, 1, 528, 40920, 1107568, 13884156, 92561040, 354817320, 818809200, 1166803110, 1037158320, 573166440, 193536720, 38567100, 4272048, 237336, 5456, 33
OFFSET
0,4
FORMULA
T(n, k) = (2^n + 1)!/((2*k)! * (2^n - 2*k + 1)!), for n >= 0, 0 <= k <= p(n), where p(n) = 1 if n = 0 otherwise p(n) = 2^(n-1). Alternative form: T(n, k) = Pochhammer(-2^n - 1, 2*k)/(2*k)!. - G. C. Greubel, Dec 30 2024
EXAMPLE
Triangle starts:
[0] 1, 1
[1] 1, 3
[2] 1, 10, 5
[3] 1, 36, 126, 84, 9
[4] 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17
MAPLE
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
Tpoly := proc(n) simplify(hypergeom([-2^n/2, -2^n/2 - 1/2], [1/2], x)):
CoeffList(%) end: seq(Tpoly(n), n = 0..5);
MATHEMATICA
Tpoly[n_] := HypergeometricPFQ[{-2^n/2, -2^n/2 - 1/2}, {1/2}, x];
Table[CoefficientList[Tpoly[n], x], {n, 0, 5}] // Flatten
PROG
(Magma)
p:= func< n | n eq 0 select 1 else 2^(n-1) >;
T:= func< n, k | Factorial(2^n+1)/(Factorial(2*k)*Factorial(2^n-2*k+1)) >;
[T(n, k): k in [0..p(n)], n in [0..8]]; // G. C. Greubel, Dec 30 2024
(SageMath)
# from sage.all import * # (use for Python)
def p(n): return 1 if n==0 else pow(2, n-1)
def T(n, k): return rising_factorial(-pow(2, n)-1, 2*k)/factorial(2*k)
print(flatten([[T(n, k) for k in range(p(n)+1)] for n in range(8)])) # G. C. Greubel, Dec 30 2024
CROSSREFS
Cf. A001146 (row sums), A000051 (main diagonal), A016131 (central terms), A201461, A028297.
Sequence in context: A091042 A111418 A113187 * A057967 A347258 A132964
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Feb 03 2021
STATUS
approved