login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340555
T(n, k) = [x^k] (2^n-1)*2^(-n-1)*((x+1)^(2^n) - (x-1)^(2^n)). Irregular triangle read by rows, for n >= 0 and 0 <= k <= 2^n.
1
0, 0, 1, 0, 0, 3, 0, 3, 0, 0, 7, 0, 49, 0, 49, 0, 7, 0, 0, 15, 0, 525, 0, 4095, 0, 10725, 0, 10725, 0, 4095, 0, 525, 0, 15, 0, 0, 31, 0, 4805, 0, 195083, 0, 3260673, 0, 27172275, 0, 124992465, 0, 336518175, 0, 548043885, 0, 548043885, 0, 336518175, 0, 124992465, 0, 27172275, 0, 3260673, 0, 195083, 0, 4805, 0, 31, 0
OFFSET
0,6
FORMULA
A340555(n, k) = -A340263(n, k) * (k mod 2).
EXAMPLE
Triangle begins:
[0] [0]
[1] [0, 1, 0]
[2] [0, 3, 0, 3, 0]
[3] [0, 7, 0, 49, 0, 49, 0, 7, 0]
[4] [0, 15, 0, 525, 0, 4095, 0, 10725, 0, 10725, 0, 4095, 0, 525, 0, 15, 0]
[5] [0, 31, 0, 4805, 0, 195083, 0, 3260673, 0, 27172275, 0, 124992465, 0, 336518175, 0, 548043885, 0, 548043885, 0, 336518175, 0, 124992465, 0, 27172275, 0, 3260673, 0, 195083, 0, 4805, 0, 31, 0]
MAPLE
CoeffList := p -> [op(PolynomialTools:-CoefficientList(p, x)), 0]:
Tpoly := proc(n) (2^n-1)*2^(-n-1)*((x+1)^(2^n) - (x-1)^(2^n)) end:
seq(print(CoeffList(Tpoly(n))), n=0..5);
PROG
(SageMath)
def A340555():
a, b, c = 1, 1, 1
yield [0]
while True:
c *= 2
a *= b
b = sum(binomial(c, 2 * k) * x ^ (2 * k) for k in range(c + 1))
q = ((b - (c - 1) * x * a)).list()
yield [-q[i] * (i % 2) for i in range(c + 1)]
for _ in range(6):
print(next(A340555_row))
CROSSREFS
Cf. A340263.
Sequence in context: A127802 A165951 A300288 * A094901 A030220 A219240
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jan 11 2021
STATUS
approved