login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340555 T(n, k) = [x^k] (2^n-1)*2^(-n-1)*((x+1)^(2^n) - (x-1)^(2^n)). Irregular triangle read by rows, for n >= 0 and 0 <= k <= 2^n. 1
0, 0, 1, 0, 0, 3, 0, 3, 0, 0, 7, 0, 49, 0, 49, 0, 7, 0, 0, 15, 0, 525, 0, 4095, 0, 10725, 0, 10725, 0, 4095, 0, 525, 0, 15, 0, 0, 31, 0, 4805, 0, 195083, 0, 3260673, 0, 27172275, 0, 124992465, 0, 336518175, 0, 548043885, 0, 548043885, 0, 336518175, 0, 124992465, 0, 27172275, 0, 3260673, 0, 195083, 0, 4805, 0, 31, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..67.

FORMULA

A340555(n, k) = -A340263(n, k) * (k mod 2).

EXAMPLE

Triangle begins:

[0] [0]

[1] [0, 1, 0]

[2] [0, 3, 0, 3, 0]

[3] [0, 7, 0, 49, 0, 49, 0, 7, 0]

[4] [0, 15, 0, 525, 0, 4095, 0, 10725, 0, 10725, 0, 4095, 0, 525, 0, 15, 0]

[5] [0, 31, 0, 4805, 0, 195083, 0, 3260673, 0, 27172275, 0, 124992465, 0, 336518175, 0, 548043885, 0, 548043885, 0, 336518175, 0, 124992465, 0, 27172275, 0, 3260673, 0, 195083, 0, 4805, 0, 31, 0]

MAPLE

CoeffList := p -> [op(PolynomialTools:-CoefficientList(p, x)), 0]:

Tpoly := proc(n) (2^n-1)*2^(-n-1)*((x+1)^(2^n) - (x-1)^(2^n)) end:

seq(print(CoeffList(Tpoly(n))), n=0..5);

PROG

(SageMath)

def A340555():

a, b, c = 1, 1, 1

yield [0]

while True:

c *= 2

a *= b

b = sum(binomial(c, 2 * k) * x ^ (2 * k) for k in range(c + 1))

q = ((b - (c - 1) * x * a)).list()

yield [-q[i] * (i % 2) for i in range(c + 1)]

A340555_row = A340555()

for _ in range(6):

print(next(A340555_row))

CROSSREFS

Cf. A340263.

Sequence in context: A127802 A165951 A300288 * A094901 A030220 A219240

Adjacent sequences: A340552 A340553 A340554 * A340556 A340557 A340558

KEYWORD

nonn,tabf

AUTHOR

Peter Luschny, Jan 11 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 09:40 EST 2023. Contains 359943 sequences. (Running on oeis4.)