OFFSET
0,8
COMMENTS
The row lengths sequence is 3*n+1 = A016777(n).
For the coefficient triangle for Chebyshev's S polynomials see A049310.
The o.g.f. for S(n,x)^3, n >= 0, is GS(3;x,z) = (1+z^2+2*z*x)/ ((1+z^2-z*x)*(1+z^2-z*x*(x^2-3))). This is obtained from the de Moivre-Binet formula for S(n,x) and the binomial theorem.
FORMULA
a(n,m) = [x^m] S(n, x)^3, n >= 0, 0 <= m <= 3*n, with Chebyshev's S polynomials (see A049310).
a(n,m) = [x^m]([z^n] GS(3;x,z)), with the o.g.f. GS(3;x,z) given above in a comment.
The row polynomials p(n, x) := Sum_{m=0..3*n} a(n,m)*x^m = S(n, x)^3 are (S(3*n+2, x) - 3*S(n, x))/(x^2 - 4). For the factorization of S polynomials see comments on A049310. - Wolfdieter Lang, Apr 09 2018
EXAMPLE
The array a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=0: 1
n=1: 0 0 0 1
n=2: -1 0 3 0 -3 0 1
n=3: 0 0 0 -8 0 12 0 -6 0 1
n=4: 1 0 -9 0 30 0 -45 0 30 0 -9 0 1
n=5: 0 0 0 27 0 -108 0 171 0 -136 0 57 0 -12 0 1
...
Row n=6: [-1, 0, 18, 0, -123, 0, 399, 0, -651, 0, 588, 0, -308, 0, 93, 0, -15, 0, 1],
Row n=7: [0, 0, 0, -64, 0, 480, 0, -1488, 0, 2488, 0, -2472, 0, 1524, 0, -588, 0, 138, 0, -18, 0, 1],
Row n=8: [1, 0, -30, 0, 345, 0, -1921, 0, 5598, 0, -9540, 0, 10212, 0, -7137, 0, 3303, 0, -1003, 0, 192, 0, -21, 0, 1].
n=2: S(2,x)^3 = (x^2 - 1)^3 = -1 + 3*x^2 - 3*x^4 + x^6.
n=3: S(3,x)^3 = (x^3 - 2*x)^3 = -8*x^3 + 12*x^5 - 6*x^7 + x^9.
CROSSREFS
KEYWORD
sign,tabf,easy
AUTHOR
Wolfdieter Lang, Dec 12 2012
STATUS
approved