login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349612
Dirichlet convolution of A342001 [{arithmetic derivative of n}/A003557(n)] with A325126 [Dirichlet inverse of rad(n)].
4
0, 1, 1, 0, 1, 0, 1, 1, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -3, 0, 3, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, -5, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
OFFSET
1,25
LINKS
FORMULA
a(n) = Sum_{d|n} A342001(d) * A325126(n/d).
If p prime, a(p) = 1. - Bernard Schott, Nov 28 2021
Dirichlet g.f.: Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)). - Sebastian Karlsson, May 05 2022
MATHEMATICA
f[p_, e_] := e/p; d[1] = 0; d[n_] := n * Plus @@ f @@@ FactorInteger[n]; f1[p_, e_] := p^(e-1); s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := -p*(1 - p)^(e - 1); s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, d[#]*s2[n/#]/s1[#] &]; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A342001(n) = (A003415(n) / A003557(n));
A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
memoA325126 = Map();
A325126(n) = if(1==n, 1, my(v); if(mapisdefined(memoA325126, n, &v), v, v = -sumdiv(n, d, if(d<n, A007947(n/d)*A325126(d), 0)); mapput(memoA325126, n, v); (v)));
A349612(n) = sumdiv(n, d, A342001(d)*A325126(n/d));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 23 2021
STATUS
approved