login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030220
Expansion of (eta(q^3)*eta(q^5))^3 in powers of q.
3
1, 0, 0, -3, 0, -3, 0, 0, 9, 5, 0, 0, 0, 0, -15, 5, 0, 0, -22, 0, 0, 0, 0, 21, 25, 0, 0, 0, 0, 0, 2, 0, 0, -14, 0, -27, 0, 0, 0, -35, 0, 0, 0, 0, 0, 34, 0, 0, 49, 0, 42, 0, 0, -27, 0, 0, 0, 0, 0, 45, -118, 0, 0, 13, 0, 0, 0, 0, -102, 0, 0, 0, 0, 0, 0, 66, 0, 0, 98, 0, 81, 0, 0, 0, -70, 0, 0, 0, 0, 45, 0, 0, 0, -14
OFFSET
1,4
LINKS
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
FORMULA
Euler transform of period 15 sequence [ 0, 0, -3, 0, -3, -3, 0, 0, -3, -3, 0, -3, 0, 0, -6, ...]. - Michael Somos, Jun 14 2007
G.f.: (1/2)* Sum_{u,v} (u*u -4*v*v)* x^(u*u +u*v +4*v*v). - Michael Somos, Jun 14 2007
G.f.: x*(Product_{k>0} (1-x^(3*k))(1-x^(5*k)))^3. - Michael Somos, Jun 14 2007
EXAMPLE
q - 3*q^4 - 3*q^6 + 9*q^9 + 5*q^10 - 15*q^15 + 5*q^16 - 22*q^19 + 21*q^24 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q^3]*QP[q^5])^3 + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
CROSSREFS
Sequence in context: A300288 A340555 A094901 * A219240 A349612 A277080
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved