This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030218 Expansion of eta(q^3) * eta(q^5) * eta(q^6) * eta(q^10) in powers of q. 2
 0, 1, 0, 0, -1, 0, -1, -2, 0, 1, 1, -2, 2, 0, 2, -1, 3, 4, 0, 0, -2, -2, -2, 0, -1, 1, -2, 0, -2, -4, 0, 4, -4, 2, -2, 2, -1, -4, 4, 2, 1, 2, 2, 0, 6, 0, 0, 4, -2, 1, 0, 2, 4, -8, -1, -2, 2, -4, 2, -2, 1, -6, -4, -2, -1, -2, 2, 4, 0, 0, -2, -4, 0, 6, -6, 0, -8, 0, 0, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89. FORMULA Expansion of q * f(-q^3) * f(-q^5) * f(-q^6) * f(-q^10) in powers of q where f() is a Ramanujan theta function. - Michael Somos, Nov 17 2014 Euler transform of period 30 sequence [ 0, 0, -1, 0, -1, -2, 0, 0, -1, -2, 0, -2, 0, 0, -2, 0, 0, -2, 0, -2, -1, 0, 0, -2, -1, 0, -1, 0, 0, -4, ...]. - Michael Somos, Nov 17 2014 G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = 30 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 17 2014 G.f. = x * Product_{k>0} (1 - x^(3*k)) * (1 - x^(5*k)) * (1 - x^(6*k)) * (1 - x^10*k)). - Michael Somos, Nov 17 2014 EXAMPLE G.f. = q - q^4 - q^6 - 2*q^7 + q^9 + q^10 - 2*q^11 + 2*q^12 + 2*q^14 - q^15 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3] QPochhammer[ q^5] QPochhammer[ q^6] QPochhammer[ q^10], {q, 0, n}]; (* Michael Somos, Nov 17 2014 *) PROG (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^10 + A), n))}; /* Michael Somos, Nov 17 2014 */ (MAGMA) Basis( CuspForms( Gamma0(30), 2), 80) [1]; /* Michael Somos, Apr 27 2015 */ CROSSREFS Sequence in context: A007968 A236532 A077763 * A281388 A127440 A118198 Adjacent sequences:  A030215 A030216 A030217 * A030219 A030220 A030221 KEYWORD sign AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 10:29 EST 2019. Contains 319218 sequences. (Running on oeis4.)