login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286137
Expansion of eta(q) * eta(q^2) * eta(q^15) * eta(q^30) in powers of q.
3
0, 0, 1, -1, -2, 1, 0, 2, 1, 0, 0, -2, 1, -2, -2, 0, 2, -2, 1, 4, -1, 2, -2, 0, 0, 0, 0, -1, 2, 2, -1, -4, -3, 2, 4, -2, -2, -6, 0, 0, 0, 8, -2, 4, 6, 1, 0, 4, -3, -8, 1, -4, 2, -2, 0, -2, -2, 0, -4, -2, 2, 4, 4, 2, -2, 0, 2, 8, -6, 0, 2, -4, 1, 4, -4, -1, -4, 0, 2
OFFSET
0,5
FORMULA
G.f.: x^2 * Prod_{k>0} (1 - x^k) * (1 - x^(2 * k)) * (1 - x^(15 * k)) * (1 - x^(30 * k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = 30 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 26 2019
a(3*n) = -A030218(n). - Michael Somos, Mar 10 2020
EXAMPLE
G.f. = x^2 - x^3 - 2*x^4 + x^5 + 2*x^7 + x^8 - 2*x^11 + x^12 + ... - Michael Somos, Mar 10 2020
MAPLE
seq(coeff(series(x^2*mul((1-x^k)*(1-x^(2*k))*(1-x^(15*k))*(1-x^(30*k)), k=1..n), x, n+1), x, n), n=0..150); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[eta[q] *eta[q^2]*eta[q^15]*eta[q^30], {q, 0, 50}], q] (* G. C. Greubel, Jul 29 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q)*eta(q^2)*eta(q^15)*eta(q^30); concat([0, 0], Vec(A)) \\ G. C. Greubel, Jul 29 2018
(Magma) A := Basis( CuspForms( Gamma0(30), 2), 80); A[2] - A[3]; /* Michael Somos, Nov 26 2019 */
CROSSREFS
Sequence in context: A030204 A083650 A138514 * A320658 A284966 A143540
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 03 2017
STATUS
approved