OFFSET
0,5
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, A Remarkable eta-product Identity
FORMULA
G.f.: x^2 * Prod_{k>0} (1 - x^k) * (1 - x^(2 * k)) * (1 - x^(15 * k)) * (1 - x^(30 * k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = 30 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 26 2019
a(3*n) = -A030218(n). - Michael Somos, Mar 10 2020
EXAMPLE
G.f. = x^2 - x^3 - 2*x^4 + x^5 + 2*x^7 + x^8 - 2*x^11 + x^12 + ... - Michael Somos, Mar 10 2020
MAPLE
seq(coeff(series(x^2*mul((1-x^k)*(1-x^(2*k))*(1-x^(15*k))*(1-x^(30*k)), k=1..n), x, n+1), x, n), n=0..150); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[eta[q] *eta[q^2]*eta[q^15]*eta[q^30], {q, 0, 50}], q] (* G. C. Greubel, Jul 29 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q)*eta(q^2)*eta(q^15)*eta(q^30); concat([0, 0], Vec(A)) \\ G. C. Greubel, Jul 29 2018
(Magma) A := Basis( CuspForms( Gamma0(30), 2), 80); A[2] - A[3]; /* Michael Somos, Nov 26 2019 */
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 03 2017
STATUS
approved