login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138514
Expansion of q^(-1/8) * eta(q^2)^4 / (eta(q) * eta(q^4)) in powers of q.
4
1, 1, -2, -1, 0, -2, 1, 0, 0, 2, 1, 2, -2, 0, 2, 1, 0, -2, 0, -2, 0, -1, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 2, 0, 0, 2, 3, 0, 0, -2, 0, 0, 2, 0, 2, 1, -2, 0, 0, 0, -2, -2, 0, 2, -2, 1, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, -2, 2, 0, 2, 2, 0, 2, 1, 0, -2, 0, 2, 0, -2, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, -2, -2, 0, 0, 0, 2, -2, 0, 0, -2
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 70 of the 74 eta-quotients listed in Table I of Martin (1996).
A030204, A083650 and A138514 are the same except for signs. - N. J. A. Sloane, May 07 2010
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x) * f(-x^2) = psi(-x) * phi(x) = chi(x) * f(-x^2)^2 = psi(x) * phi(-x^2) = f(x)^2 / chi(x) = f(x)^3 / phi(x) = f(-x^2)^3 / psi(-x) = phi(x)^2 / chi(x)^3 = chi(x)^3 * psi(-x)^2 = (f(x)^3 * psi(-x))^(1/2) = (f(-x^2)^3 * phi(x))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of psi(i * x) * psi(-i * x) in powers x^2 where i^2 = -1 and psi() is a Ramanujan theta function. - Michael Somos, Feb 16 2014
Euler transform of period 4 sequence [ 1, -3, 1, -2, ...].
a(n) = b(8*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = 0 if p == 3, 5, 7 (mod 8) and e odd, b(p^e) = 1 if p == 3 (mod 4) and e even, b(p^e) = (-1)^(e/2) if p == 5 (mod 8) and e even, b(p^e) = e+1 if p == 1 (mod 8) and p = x^2 + 64*y^2, b(p^e) = (-1)^e * (e+1) if p == 1 (mod 8) and p is not of the form x^2 + 64*y^2.
a(9*n + 1) = a(n), a(9*n + 4) = a(9*n + 7) = 0. a(n) = (-1)^n * A030204(n) = (-1)^floor((n+1)/2) * A083650(n).
G.f.: Product_{k>0} (1 - x^(2*k))^2 * (1 + x^(2*k - 1)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (256 t)) = 16 (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 10 2015
EXAMPLE
G.f. = 1 + x - 2*x^2 - x^3 - 2*x^5 + x^6 + 2*x^9 + x^10 + 2*x^11 - 2*x^12 + ...
G.f. = q + q^9 - 2*q^17 - q^25 - 2*q^41 + q^49 + 2*q^73 + q^81 + 2*q^89 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ -x], {x, 0, n}]; (* Michael Somos, Jun 10 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^4 / (QPochhammer[ x] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Jun 10 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 / (eta(x + A) * eta(x^4 + A)), n))};
(PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 8*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%8==1, (e+1) * if( qfbclassno( -8 * p) / 4 % 2, (-1)^e, 1), if( e%2==0, (-1)^(e/2 * (p%8==5)))))) };
(PARI) {a(n) = if( n<0, 0, n = 8*n + 1; (qfrep([ 1, 0; 0, 64], n) - qfrep([ 4, 2; 2, 17], n))[n])};
CROSSREFS
Sequence in context: A190893 A030204 A083650 * A286137 A320658 A284966
KEYWORD
sign
AUTHOR
Michael Somos, Mar 22 2008
STATUS
approved