login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138512
Expansion of q * f(q^5)^5 / f(q) in powers of q where f() is a Ramanujan theta function.
3
1, -1, 2, -3, 5, -2, 6, -5, 7, -5, 12, -6, 12, -6, 10, -11, 16, -7, 20, -15, 12, -12, 22, -10, 25, -12, 20, -18, 30, -10, 32, -21, 24, -16, 30, -21, 36, -20, 24, -25, 42, -12, 42, -36, 35, -22, 46, -22, 43, -25, 32, -36, 52, -20, 60, -30, 40, -30, 60, -30, 62
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q) * eta(q^4) * eta(q^10)^15 / (eta(q^2)^3 * eta(q^5)^5 * eta(q^20)^5) in powers of q.
Euler transform of period 20 sequence [ -1, 2, -1, 1, 4, 2, -1, 1, -1, -8, -1, 1, -1, 2, 4, 1, -1, 2, -1, -4, ...].
a(n) is multiplicative with a(2^e) = -(2^(e+1) - (-1)^(e+1)) / 3 if e>0, a(5^e) = 5^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), a(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).
a(n) = -(-1)^n * A053723(n-1).
From Michael Somos, Sep 25 2015: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = (16/5)^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138506.
a(2*n + 1) = A134080(n). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = A328717 / 8 = 0.0882764... . - Amiram Eldar, Nov 23 2023
EXAMPLE
G.f. = q - q^2 + 2*q^3 - 3*q^4 + 5*q^5 - 2*q^6 + 6*q^7 - 5*q^8 + 7*q^9 - 5*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ -q^5]^5 / QPochhammer[ -q], {q, 0, n}]; (* Michael Somos, Sep 25 2015 *)
a[ n_] := If[ n < 1, 0, -(-1)^n Sum[ n/d KroneckerSymbol[ 5, d], { d, Divisors @ n}]]; (* Michael Somos, Sep 25 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, d * kronecker(5, n/d)))};
(PARI) {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -(2^(e+1) - (-1)^(e+1)) / 3, f = kronecker(5, p); (p^(e+1) - f^(e+1)) / (p - f) ))) };
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^10 + A)^15 / (eta(x^2 + A)^3 * eta(x^5 + A)^5 * eta(x^20 + A)^5), n))};
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Mar 21 2008
STATUS
approved