login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138513
a(n) = 8*a(n-1) - 5*a(n-2).
1
1, 3, 19, 137, 1001, 7323, 53579, 392017, 2868241, 20985843, 153545539, 1123435097, 8219753081, 60140849163, 440028027899, 3219519977377, 23556019679521, 172350557549283, 1261024361996659, 9226442108226857
OFFSET
1,2
COMMENTS
Rightmost digit of each term forms a cycle with period 4: 1, 3, 9, 7, ... (repeat) ...
Limit_{n->oo} a(n)/a(n-1) = 4 + sqrt(11) = 7.31662479...
FORMULA
a(n) = 8*a(n-1) - 5*a(n-2), n> 2; given a(1) = 1, a(2) = 3.
a(n) = upper left term of the 2 X 2 matrix [1,2; 1,7]^n * [1,0].
O.g.f.: x*(1-5*x)/(1-8*x+5*x^2). - R. J. Mathar, Apr 12 2008
a(n) = (3*sqrt(11)/22 + 1/2)*(4 - sqrt(11))^n + (-3*sqrt(11)/22 + 1/2)*(4 + sqrt(11))^n. - Emeric Deutsch, Apr 02 2008
EXAMPLE
a(5) = 1001 = 8*a(4) - 5*a(3) = 8*137 - 5*19.
a(5) = 1001 = upper left term in [1,2; 1,7]^5.
MAPLE
a[1]:=1: a[2]:=3: for n from 3 to 25 do a[n]:=8*a[n-1]-5*a[n-2] end do: seq(a[n], n=1..20); # Emeric Deutsch, Apr 02 2008
MATHEMATICA
LinearRecurrence[{8, -5}, {1, 3}, 50] (* G. C. Greubel, Sep 28 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(x*(1-5*x)/(1-8*x+5*x^2)) \\ G. C. Greubel, Sep 28 2017
CROSSREFS
Sequence in context: A105797 A278189 A221297 * A321515 A094661 A094662
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Mar 22 2008
EXTENSIONS
More terms from R. J. Mathar and Emeric Deutsch, Apr 12 2008
STATUS
approved