login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030204
Expansion of q^(-1/8) * eta(q) * eta(q^2) in powers of q.
8
1, -1, -2, 1, 0, 2, 1, 0, 0, -2, 1, -2, -2, 0, 2, -1, 0, 2, 0, 2, 0, 1, 0, 0, -2, 0, 0, 0, -1, -2, -2, 0, 2, 0, 0, -2, 3, 0, 0, 2, 0, 0, 2, 0, 2, -1, -2, 0, 0, 0, -2, 2, 0, -2, -2, -1, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 2, 2, 0, 2, -2, 0, -2, 1, 0
OFFSET
0,3
COMMENTS
Number 66 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
A030204, A083650 and A138514 are the same except for signs. - N. J. A. Sloane, May 07 2010
LINKS
S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334. [a(n) = coefficient of q^(9m+1) in the q-expansion of the unique normalized newform g of weight 1, level 128, and character chi_2. - N. J. A. Sloane, Oct 18 2014]
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k)).
G.f.: (Sum_{k>0} x^((k^2 - k)/2)) * (Sum_{k in Z} (-1)^k * x^k^2). - Michael Somos, Sep 02 2006
Expansion of psi(x) * phi(-x) = f(-x^2) * f(-x) = f(-x)^2 / chi(-x) = f(-x)^3 / phi(-x) = f(-x^2)^2 * chi(-x) = f(-x^2)^3 / psi(x) = psi(-x) * phi(-x^2) = psi(x)^2 * chi(-x)^3 = phi(-x)^2 / chi(-x)^3 = (f(-x)^3 * psi(x))^(1/2) = (f(-x^2)^3 * phi(-x))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Mar 22 2008
Expansion of psi(x) * psi(-x) in powers of x^2 where psi() is a Ramanujan theta function. - Michael Somos, Oct 11 2013
Euler transform of period 2 sequence [ -1, -2, ...].
a(3*n) = A107063(n). a(3*n + 2) = -2 * A107064(n). - Michael Somos, Oct 11 2013
a(9*n + 1) = -a(n), a(9*n + 4) = a(9*n + 7) = 0. - Michael Somos, Mar 17 2004
a(n) = b(8*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = 0 if p === 3,5,7 (mod 8) and e odd, b(p^e) = (-1)^(e/2) if p == 3 (mod 8) and e even, b(p^e) = 1 if p == 5,7 (mod 8) and e even, b(p^e) = e + 1 if p == 1 (mod 8) and p = x^2 + 32*y^2, b(p^e) = (-1)^e * (e + 1) if p == 1 (mod 8) and p is not of the form x^2 + 32*y^2.
a(n) = (-1)^n * A138514(n). Convolution inverse is A002513.
G.f.: exp(Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018
EXAMPLE
G.f. = 1 - x - 2*x^2 + x^3 + 2*x^5 + x^6 - 2*x^9 + x^10 - 2*x^11 - 2*x^12 + ...
G.f. = q - q^9 - 2*q^17 + q^25 + 2*q^41 + q^49 - 2*q^73 + q^81 - 2*q^89 - 2*q^97 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^2], {x, 0, n}]; (* Michael Somos, Oct 11 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Oct 11 2013 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)), {x, 0, n}]; (* Michael Somos, Oct 11 2013 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, I x] / (4 Sqrt[ x] I^(1/4)), {x, 0, 4 n}]; (* Michael Somos, Oct 11 2013 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, Pi/4, x] / (2^(3/2) x^(1/2)), {x, 0, 4 n}]; (* Michael Somos, Jan 31 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A), n))};
(PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 8*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%8==1, (e + 1) * if( qfbclassno(-4*p)%8, (-1)^e, 1), e%2==0, (-1)^(e/2*(p%8<5)))))}; /* Michael Somos, Jul 26 2006 */
(PARI) {a(n) = if( n<0, 0, n = 8*n + 1; (qfrep([1, 0; 0, 32], n) - qfrep([4, 2; 2, 9], n))[n])}; /* Michael Somos, Sep 02 2006 */
(Magma) Basis( CuspForms( Gamma1(128), 1), 641)[1]; /* Michael Somos, Jan 31 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved