login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107063
Expansion of q^(-1/24) * (eta(q^2) * eta(q^3)^4) / (eta(q) * eta(q^6)^2) in powers of q.
2
1, 1, 1, -2, -2, -1, 0, 1, -2, 0, -2, 0, 3, 2, 2, -1, 0, 2, -2, 2, 0, 0, 1, 0, 2, -2, 1, 0, -2, -4, 0, 0, -2, 0, 0, 1, 0, 0, 0, -2, 1, 0, -2, -2, 0, 0, 0, 2, 2, 0, 2, 1, 2, 0, -2, 2, 0, 1, 0, 0, 0, 0, -2, 4, 0, 0, 0, -2, 0, 2, 3, 0, 0, -2, 2, -2, -2, -1, -2, 0, -4, 0, 0, 2, -2, 0, 0, -2, 2, 2, -2, 0, 1, 0, 0, -2, 0, -4, 0, 2, 1, -2, 0, -2, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 6 sequence [1, 0, -3, 0, 1, -2, ...].
G.f.: Product_{k>0} (1+x^k)*(1-x^(3*k))^2/(1+x^(3*k))^2.
Expansion of phi(-q^3)^2 / chi(-q) in powers of q where phi(), chi() are Ramanujan theta functions.
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/24)* (eta[q^2]*eta[q^3]^4)/(eta[q]*eta[q^6]^2), {q, 0, 100}], q] (* G. C. Greubel, Apr 18 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^4 / eta(x + A) / eta(x^6 + A)^2, n))}
CROSSREFS
A030204(3*n) = a(n).
Sequence in context: A287401 A003406 A226289 * A290453 A108423 A361154
KEYWORD
sign
AUTHOR
Michael Somos, May 10 2005
STATUS
approved