

A156319


Triangle by columns: (1, 2, 0, 0, 0,...) in every column.


1



1, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Binomial transform of the triangle = A110813.
Eigensequence of the triangle = A001045
Inverse = a triangle with (1, 2, 4, 8, 16,...) in every column.
Triangle T(n,k), 0<=k<=n, given by [2,2,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 . [From Philippe Deléham, Feb 08 2009]


LINKS

Table of n, a(n) for n=1..55.


FORMULA

Triangle read by rows, T(n,k) = 1 if (n = k); 2 if k = n1, 0 otherwise.
By columns, (1, 2, 0, 0, 0,...) in every column.
T(n,k)=A097806(n,k)*2^(nk). [From Philippe Deléham, Feb 08 2009]
G.f.: (12x)*x*y/(x*y1).  R. J. Mathar, Aug 12 2015


EXAMPLE

First few rows of the triangle =
1;
2, 1;
0, 2, 1;
0, 0, 2, 1;
0, 0, 0, 2, 1;
0, 0, 0, 0, 2, 1;
0, 0, 0, 0, 0, 2, 1;
0, 0, 0, 0, 0, 0, 2, 1;
0, 0, 0, 0, 0, 0, 0, 2, 1;
...


CROSSREFS

Cf. A110813, A001045
Sequence in context: A264034 A058531 A093073 * A251635 A190893 A030204
Adjacent sequences: A156316 A156317 A156318 * A156320 A156321 A156322


KEYWORD

nonn,tabl,easy


AUTHOR

Gary W. Adamson, Feb 07 2009


STATUS

approved



