login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251635
Riordan array (1-2*x,x), inverse of Riordan array (1/(1-2*x), x) = A130321.
2
1, -2, 1, 0, -2, 1, 0, 0, -2, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
This is a simple Riordan array, an infinite lower triangular matrix. It is the inverse matrix of A130321 (with zeros above the diagonal).
Row sums have o.g.f. (1-2*x)/(1-x) and give 1, repeat(-1), i.e., A153881(n+1), n >= 0.
Alternate row sums have o.g.f. (1-2*x)/(1+x) and give 1, repeat(-3,3), i.e., (-1)^n*A122553(n).
FORMULA
T(n, k) = 0 if n < k and k = 0..(n-2) for n >= 2, and T(n, n) = 1 and T(n, n-1) = -2.
G.f. for row polynomials P(n, x) = -2^x^(n-1) + x^n is (1-2*z)/(1-x*z).
G.f. for k-th column: (1-2*x)*x^k, k >= 0.
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: -2 1
2: 0 -2 1
3: 0 0 -2 1
4: 0 0 0 -2 1
5: 0 0 0 0 -2 1
6: 0 0 0 0 0 -2 1
7: 0 0 0 0 0 0 -2 1
8: 0 0 0 0 0 0 0 -2 1
9: 0 0 0 0 0 0 0 0 -2 1
10: 0 0 0 0 0 0 0 0 0 -2 1
...
PROG
(Haskell)
a251635 n k = a251635_tabl !! n !! k
a251635_row n = a251635_tabl !! n
a251635_tabl = [1] : iterate (0 :) [-2, 1]
-- Reinhard Zumkeller, Jan 11 2015
CROSSREFS
KEYWORD
sign,easy,tabl
AUTHOR
Wolfdieter Lang, Jan 10 2015
STATUS
approved