login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251637
Square array read by antidiagonals containing in row n the multiples of prime(n) in A098550 in order of appearance.
6
2, 3, 4, 15, 9, 8, 14, 5, 15, 14, 22, 35, 25, 6, 6, 39, 11, 7, 35, 12, 12, 51, 13, 33, 21, 10, 21, 16, 38, 17, 26, 55, 28, 20, 27, 10, 69, 19, 85, 65, 44, 91, 45, 39, 20, 87, 23, 95, 34, 91, 99, 49, 85, 33, 22, 62, 29, 115, 57, 68, 52, 77, 63, 55, 45, 26, 74
OFFSET
1,1
COMMENTS
T(n,k) = A251715(n,k)*A000040(n); A251715(n,k) = T(n,k)/A000040(n);
T(n,k) = A098550(A251716(n,k)); A251716(n,k) = A098551(T(n,k));
T(n,1) = A251618(n); for n > 4: T(n,2) = A000040(n);
conjecture: A098550 is a permutation of the positive integers iff A001221(n) = number of rows containing n.
A251541 = first column, and A251544 = third column for row numbers > 4. - Reinhard Zumkeller, Dec 16 2014
LINKS
EXAMPLE
. n p | first 14 multiples of p = prime(n) in A098550, n = 1..25
. -------+-------------------------------------------------------------
. 1 2 | 2 4 8 14 6 12 16 10 20 22 26 28 32 18
. 2 3 | 3 9 15 6 12 21 27 39 33 45 51 18 24 36
. 3 5 | 15 5 25 35 10 20 45 85 55 65 30 95 40 50
. 4 7 | 14 35 7 21 28 91 49 63 42 56 77 119 133 161
. 5 11 | 22 11 33 55 44 99 77 66 88 165 143 121 187 110
. 6 13 | 39 13 26 65 91 52 117 78 104 195 143 130 156 221
. 7 17 | 51 17 85 34 68 119 153 102 187 136 170 255 221 204
. 8 19 | 38 19 95 57 133 76 171 114 152 209 247 190 285 228
. 9 23 | 69 23 115 46 161 92 138 207 184 253 299 345 230 276
. 10 29 | 87 29 58 145 203 116 174 261 232 319 377 290 435 348
. 11 31 | 62 31 93 155 124 217 279 186 341 403 248 465 310 372
. 12 37 | 74 37 111 185 148 259 222 333 296 407 555 370 629 481
. 13 41 | 123 41 82 205 164 287 246 369 451 328 410 533 615 492
. 14 43 | 86 43 129 215 172 301 387 258 473 344 430 645 559 516
. 15 47 | 94 47 329 141 235 188 282 423 517 376 470 611 705 564
. 16 53 | 106 53 265 159 212 371 318 477 424 583 689 530 795 636
. 17 59 | 118 59 177 295 236 413 354 531 649 472 767 590 885 1003
. 18 61 | 122 61 427 183 305 244 366 549 671 488 793 610 915 732
. 19 67 | 201 67 335 134 268 469 603 402 536 737 871 670 1005 804
. 20 71 | 142 71 213 355 284 497 426 639 568 781 710 1065 923 852
. 21 73 | 146 73 365 219 292 511 438 657 584 803 730 949 1095 876
. 22 79 | 158 79 237 395 316 553 474 711 632 869 1027 790 1185 948
. 23 83 | 249 83 581 166 415 332 498 747 913 664 1079 830 1245 996
. 24 89 | 178 89 267 445 356 623 534 801 712 979 1157 890 1335 1068
. 25 97 | 291 97 679 194 485 388 582 873 1067 776 970 1261 1455 1164 .
. ---------------------------------------------------------------------
See also A251715 for a table with T(n,k)/p and A251716 for a table of indices of T(n,k) within A098550.
MATHEMATICA
rows = 25; (* f = A098550 *) Clear[f, row]; f[n_ /; n <= 3] := n; f[n_] := f[n] = Module[{k}, For[k=4, GCD[f[n-2], k] == 1 || GCD[f[n-1], k]>1 || MemberQ[Array[f, n-1], k], k++]; k]; row[n_] := row[n] = Module[{k, cnt}, Reap[For[k=1; cnt=0, cnt <= rows-n, k++, If[Divisible[f[k], Prime[n]], cnt++; Sow[f[k]]]]][[2, 1]]]; A251637 = Table[row[n-k+1][[k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 17 2014 *)
PROG
(Haskell) when seen as table read by rows:
a251637 n k = a251637_tabl !! (n-1) !! (k-1)
a251637_row n= a251637_tabl !! (n-1)
a251637_tabl = adias $ map
(\k -> filter
((== 0) . flip mod (fromInteger $ a000040 k)) a098550_list) [1..]
CROSSREFS
Cf. A098550, A000040, A251618 (first column), A001221, A251715, A251716.
Sequence in context: A204983 A249623 A367742 * A365436 A035047 A347335
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Dec 07 2014
STATUS
approved