OFFSET
1,1
COMMENTS
conjecture: A098550 is a permutation of the positive integers iff A001221(n) = number of rows containing n.
A251541 = first column, and A251544 = third column for row numbers > 4. - Reinhard Zumkeller, Dec 16 2014
LINKS
Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
EXAMPLE
. n p | first 14 multiples of p = prime(n) in A098550, n = 1..25
. -------+-------------------------------------------------------------
. 1 2 | 2 4 8 14 6 12 16 10 20 22 26 28 32 18
. 2 3 | 3 9 15 6 12 21 27 39 33 45 51 18 24 36
. 3 5 | 15 5 25 35 10 20 45 85 55 65 30 95 40 50
. 4 7 | 14 35 7 21 28 91 49 63 42 56 77 119 133 161
. 5 11 | 22 11 33 55 44 99 77 66 88 165 143 121 187 110
. 6 13 | 39 13 26 65 91 52 117 78 104 195 143 130 156 221
. 7 17 | 51 17 85 34 68 119 153 102 187 136 170 255 221 204
. 8 19 | 38 19 95 57 133 76 171 114 152 209 247 190 285 228
. 9 23 | 69 23 115 46 161 92 138 207 184 253 299 345 230 276
. 10 29 | 87 29 58 145 203 116 174 261 232 319 377 290 435 348
. 11 31 | 62 31 93 155 124 217 279 186 341 403 248 465 310 372
. 12 37 | 74 37 111 185 148 259 222 333 296 407 555 370 629 481
. 13 41 | 123 41 82 205 164 287 246 369 451 328 410 533 615 492
. 14 43 | 86 43 129 215 172 301 387 258 473 344 430 645 559 516
. 15 47 | 94 47 329 141 235 188 282 423 517 376 470 611 705 564
. 16 53 | 106 53 265 159 212 371 318 477 424 583 689 530 795 636
. 17 59 | 118 59 177 295 236 413 354 531 649 472 767 590 885 1003
. 18 61 | 122 61 427 183 305 244 366 549 671 488 793 610 915 732
. 19 67 | 201 67 335 134 268 469 603 402 536 737 871 670 1005 804
. 20 71 | 142 71 213 355 284 497 426 639 568 781 710 1065 923 852
. 21 73 | 146 73 365 219 292 511 438 657 584 803 730 949 1095 876
. 22 79 | 158 79 237 395 316 553 474 711 632 869 1027 790 1185 948
. 23 83 | 249 83 581 166 415 332 498 747 913 664 1079 830 1245 996
. 24 89 | 178 89 267 445 356 623 534 801 712 979 1157 890 1335 1068
. 25 97 | 291 97 679 194 485 388 582 873 1067 776 970 1261 1455 1164 .
. ---------------------------------------------------------------------
MATHEMATICA
rows = 25; (* f = A098550 *) Clear[f, row]; f[n_ /; n <= 3] := n; f[n_] := f[n] = Module[{k}, For[k=4, GCD[f[n-2], k] == 1 || GCD[f[n-1], k]>1 || MemberQ[Array[f, n-1], k], k++]; k]; row[n_] := row[n] = Module[{k, cnt}, Reap[For[k=1; cnt=0, cnt <= rows-n, k++, If[Divisible[f[k], Prime[n]], cnt++; Sow[f[k]]]]][[2, 1]]]; A251637 = Table[row[n-k+1][[k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 17 2014 *)
PROG
(Haskell) when seen as table read by rows:
a251637 n k = a251637_tabl !! (n-1) !! (k-1)
a251637_row n= a251637_tabl !! (n-1)
a251637_tabl = adias $ map
(\k -> filter
((== 0) . flip mod (fromInteger $ a000040 k)) a098550_list) [1..]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Dec 07 2014
STATUS
approved