login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251618
Smallest term in A098550 having prime(n) as a factor.
3
2, 3, 15, 14, 22, 39, 51, 38, 69, 87, 62, 74, 123, 86, 94, 106, 118, 122, 201, 142, 146, 158, 249, 178, 291, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
OFFSET
1,1
COMMENTS
Largest prime factor of a(n) = prime(n);
a(n) is composite for n > 2;
first column in A251637;
conjecture: for n > 2: a(n) = 2*prime(n) or a(n) = 3*prime(n);
conjecture: for n > 25: a(n) = 2*prime(n).
LINKS
MATHEMATICA
nmax = 100;
b[n_] := b[n] = If[n <= 4, n, For[k = 1, True, k++, If[FreeQ[Array[b, n-1], k] && GCD[k, b[n-1]] == 1 && GCD[k, b[n-2]] > 1, Return[k]]]];
A098550 = Array[b, 12*nmax]; (* If the message Missing[NotFound] appears, the coefficient 12 in 12*nmax should be increased. *)
a[n_] := SelectFirst[A098550, Divisible[#, Prime[n]]&];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 27 2021 *)
PROG
(Haskell)
import Data.List (find); import Data.Maybe (fromJust)
a251618 n = fromJust $
find (\x -> mod x (fromIntegral $ a000040 n) == 0) a098550_list
CROSSREFS
Cf. A098550, A000040, A251637, A251619 (smallest prime factor), A006530.
Sequence in context: A342567 A088030 A101047 * A309765 A238691 A241721
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 07 2014
STATUS
approved