OFFSET
1,1
COMMENTS
Largest prime factor of a(n) = prime(n);
a(n) is composite for n > 2;
first column in A251637;
conjecture: for n > 2: a(n) = 2*prime(n) or a(n) = 3*prime(n);
conjecture: for n > 25: a(n) = 2*prime(n).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
MATHEMATICA
nmax = 100;
b[n_] := b[n] = If[n <= 4, n, For[k = 1, True, k++, If[FreeQ[Array[b, n-1], k] && GCD[k, b[n-1]] == 1 && GCD[k, b[n-2]] > 1, Return[k]]]];
A098550 = Array[b, 12*nmax]; (* If the message Missing[NotFound] appears, the coefficient 12 in 12*nmax should be increased. *)
a[n_] := SelectFirst[A098550, Divisible[#, Prime[n]]&];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 27 2021 *)
PROG
(Haskell)
import Data.List (find); import Data.Maybe (fromJust)
a251618 n = fromJust $
find (\x -> mod x (fromIntegral $ a000040 n) == 0) a098550_list
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 07 2014
STATUS
approved