



1, 1, 1, 1, 1, 1, 3, 1, 2, 4, 1, 1, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 10, 6, 6, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 6, 4, 6, 8, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


REFERENCES

Bradley Klee, Posting to Sequence Fans Mailing List, Dec 07 2014
Vladimir Shevelev, Postings to Sequence Fans Mailing List, Dec 07, 10 and 11, 2014


LINKS



FORMULA

Bradley Klee noted that this conjecture and his conjectures in A251416 are equivalent. At least to one side, our conjecture could be deduced from Klee's conjectures by a simple induction.  Vladimir Shevelev, Dec 10 2014
As a corollary, we have an explicit conjectural formula for prime(n), n>=8, essentially based on A098550: prime(n) = 19 + sum{i=9,...,n}a(i+4).  Vladimir Shevelev, Dec 11 2014


EXAMPLE

For formula for prime(n):
1) n=8, prime(8) = 19;
2) n=9, prime(9) = 19 + a(13) = 19 + 4 = 23;
3) n=10, prime(10)= 19 + a(13) + a(14) = 23 + 6 = 29, etc.
(End)


MATHEMATICA

f[lst_] := Block[{k = 4}, While[GCD[lst[[2]], k] == 1  GCD[lst[[1]], k] > 1  MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, 1000]; runningMax = Rest[FoldList[Max, Infinity, #]]&; A249943 = runningMax[Take[Ordering[A098550], NestWhile[#+1&, 1, MemberQ[A098550, #] &]  1]]; Length /@ Split[A249943] (* JeanFrançois Alcover, Sep 11 2017, using code from Robert G. Wilson v *)


PROG

(Haskell)
import Data.List (group)
a251621 n = a251621_list !! (n1)
a251621_list = map length $ group a249943_list


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



