|
|
A309765
|
|
a(n) is the least k>=1 such that k*(k+1) is divisible by A003418(n).
|
|
1
|
|
|
1, 1, 2, 3, 15, 15, 20, 104, 224, 224, 440, 440, 2079, 2079, 2079, 2079, 194480, 194480, 1956240, 1956240, 1956240, 1956240, 6113744, 6113744, 19706400, 19706400, 317839599, 317839599, 2183843375, 2183843375, 6081487775, 6081487775, 6081487775, 6081487775, 6081487775, 6081487775
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
EXAMPLE
|
a(3)=2 because A003418(3)=6 divides 2*3 but does not divide 1*2.
|
|
MAPLE
|
A[1]:= 1:
X:=[]:
P:=[]:
S:= [[]]:
for n from 2 to 50 do
F:= ifactors(n)[2];
found:= false;
for t in F do
if member(t[1], P, 'i') then
if t[1]^t[2]>X[i] then
found:= true;
X:= subsop(i=t[1]^t[2], X);
fi
else
found:= true;
X:= [op(X), t[1]];
P:= [op(P), t[1]];
S:= map(t -> ([op(t), 0], [op(t), -1]), S);
fi;
od;
if found then
A[n]:= min(map(x -> chrem(x, X), S[2..-1]));
else A[n]:= A[n-1]
fi;
od:
seq(A[i], i=1..50);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|