login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251634
Numerators of inverse Riordan triangle of Riordan triangle A029635. Riordan (1/(1-x), x/(1+2*x)). Triangle read by rows for 0 <= m <= n.
2
1, 1, 1, 1, -1, 1, 1, 3, -3, 1, 1, -5, 9, -5, 1, 1, 11, -23, 19, -7, 1, 1, -21, 57, -61, 33, -9, 1, 1, 43, -135, 179, -127, 51, -11, 1, 1, -85, 313, -493, 433, -229, 73, -13, 1, 1, 171, -711, 1299, -1359, 891, -375, 99, -15, 1, 1, -341, 1593, -3309, 4017, -3141, 1641, -573, 129, -17, 1
OFFSET
0,8
COMMENTS
The denominators are given by 2*A130321(n,m).
The rational lower triangular matrix with entries R(n,m) = T(n,m)/(2*A130321(n,m)) = T(n,m)/2^(n-m+1) for n >= m >= 0 and 0 otherwise is the inverse of the Riordan matrix A029635.
R is the rational Riordan triangle (1/(2-x), x/(1+x)).
The numerator triangle T is the Riordan array (1/(1-x), x/(1+2*x)). From the o.g.f. of the column sequences of R and T(n,m) = 2^(n-m+1)*R(n,m).
Row sums of the rational triangle R are [1/2, seq(3/2^(n+1), for n >= 1)].
Row sums of the present triangle T give [repeat(1,2,)].
Alternating row sums of the rational triangle R give (-1)^n*A102900(n)/2^(n+1), n >= 0: 1/2, -1/4, 7/8, -25/16, 103/32, -409/64, 1639/128, -6553/256, 26215/512, ... .
Alternating row sums of the present triangle T give A084567.
The inverse of the T Riordan matrix is ((1-3*x)/(1-2*x), x/(1-2*x) = A251636.
Equals A248810 when the first column (m = 0) of ones is removed. - Georg Fischer, Jul 26 2023
FORMULA
O.g.f. of the row polynomials P(n,x) = sum_{m=0..n} (R(n,m)*x^m of the rational triangle R: G(z,x) = sum_{n>=0} P(n,x)*z^n = (1+z)/((2-z)*(1+(1-x)*z).
O.g.f. column m of the rational triangle R: (1/(2-x))*(x/(1+x))^m, m >= 0 (Riordan property of R).
O.g.f. column m of the numerator triangle T: (1/(1-x))*(x/(1+2*x))^m, m >= 0. (Riordan property of T).
T(n, k) = k!*S(n, k) where S(n, k) is recursively defined by:
if k = 0 then 1 else if k > n then 0 else S(n-1, k-1)/k - 2*S(n-1, k). - Peter Luschny, Jan 19 2020
EXAMPLE
The triangle T(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 1 -1 1
3: 1 3 -3 1
4: 1 -5 9 -5 1
5: 1 11 -23 19 -7 1
6: 1 -21 57 -61 33 -9 1
7: 1 43 -135 179 -127 51 -11 1
8: 1 -85 313 -493 433 -229 73 -13 1
9: 1 171 -711 1299 -1359 891 -375 99 -15 1
...
The rational Riordan triangle R(n,m) begins:
n\m 0 1 2 3 4 5 ...
0: 1/2
1: 1/4 1/2
2: 1/8 -1/4 1/2
3: 1/16 3/8 -3/4 1/2
4: 1/32 -5/16 9/8 -5/4 1/2
5: 1/64 11/3 -23/1 19/8 -7/4 1/2
...
For more rows see the link.
MAPLE
A251634 := proc(n, k) local S; S := proc(n, k) option remember; `if`(k = 0, 1,
`if`(k > n, 0, S(n-1, k-1)/k - 2*S(n-1, k))) end: k!*S(n, k) end:
seq(seq(A251634(n, k), k=0..n)), n=0..9); # Peter Luschny, Jan 19 2020
KEYWORD
sign,tabl,easy
AUTHOR
Wolfdieter Lang, Jan 09 2015
STATUS
approved