login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A034871
Odd-numbered rows of Pascal's triangle.
30
1, 1, 1, 3, 3, 1, 1, 5, 10, 10, 5, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 1, 15, 105, 455, 1365, 3003, 5005
OFFSET
0,4
LINKS
Eduardo H. M. Brietzke, Generalization of an identity of Andrews, Fibonacci Quart. 44 (2006), no. 2, 166-171.
FORMULA
G.f.: (1+y)/(1-x*(1+y)^2). - Vladimir Kruchinin, Nov 22 2020
MATHEMATICA
Take[Table[Binomial[n, m], {n, 0, 20}, {m, 0, n}], {2, -1, 2}]//Flatten (* Harvey P. Dale, Dec 10 2018 *)
PROG
(Haskell)
a034871 n = a034871_list !! n
a034871_list = concat $ map ([1, 1] ^) [1, 3..]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
_ * _ = []
-- Reinhard Zumkeller, Apr 02 2011
CROSSREFS
Sequence in context: A196493 A251634 A196989 * A333758 A015109 A319699
KEYWORD
nonn,tabf,easy
AUTHOR
STATUS
approved