The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034869 Right half of Pascal's triangle. 8
 1, 1, 2, 1, 3, 1, 6, 4, 1, 10, 5, 1, 20, 15, 6, 1, 35, 21, 7, 1, 70, 56, 28, 8, 1, 126, 84, 36, 9, 1, 252, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 924, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From R. J. Mathar, May 13 2006: (Start) Also flattened table of the expansion coefficients of x^n in Chebyshev Polynomials T_k(x) of the first kind: x^n is 2^(1-n) multiplied by the sum of floor(1+n/2) terms using only terms T_k(x) with even k if n even, only terms T_k(x) with odd k if n is odd and halving the coefficient a(..) in front of any T_0(x): x^0=2^(1-0) a(0)/2 T_0(x) x^1=2^(1-1) a(1) T_1(x) x^2=2^(1-2) [a(2)/2 T_0(x)+a(3) T_2(x)] x^3=2^(1-3) [a(4) T_1(x)+a(5) T_3(x)] x^4=2^(1-4) [a(6)/2 T_0(x)+a(7) T_2(x) +a(8) T_4(x)] x^5=2^(1-5) [a(9) T_1(x)+a(10) T_3(x) +a(11) T_5(x)] x^6=2^(1-6) [a(12)/2 T_0(x)+a(13) T_2(x) +a(14) T_4(x) +a(15) T_6(x)] x^7=2^(1-7) [a(16) T_1(x)+a(17) T_3(x) +a(18) T_5(x) +a(19) T_7(x)]" (End) T(n,k) = A034868(n,floor(n/2)-k), k = 0..floor(n/2). - Reinhard Zumkeller, Jul 27 2012 Rows are binomial(r-1,(2r+1-(-1)^r)\4 -n ) where r is the row and n is the term. Columns are binomial(2m+c-3,m-1) where c is the column and m is the term. - Anthony Browne, May 17 2016 LINKS Reinhard Zumkeller, Rows n=0..150 of triangle, flattened EXAMPLE The table starts: 1 1 2 1 3 1 6 4 1 MAPLE for n from 0 to 60 do for j from n mod 2 to n by 2 do print( binomial(n, (n-j)/2) ); od; od; # R. J. Mathar, May 13 2006 MATHEMATICA Table[Binomial[n, k], {n, 0, 14}, {k, Ceiling[n/2], n}] // Flatten (* Michael De Vlieger, May 19 2016 *) PROG (Haskell) a034869 n k = a034869_tabf !! n !! k a034869_row n = a034869_tabf !! n a034869_tabf = [1] : f 0 [1] where    f 0 us'@(_:us) = ys : f 1 ys where                     ys = zipWith (+) us' (us ++ [0])    f 1 vs@(v:_) = ys : f 0 ys where                   ys = zipWith (+) (vs ++ [0]) ([v] ++ vs) Reinhard Zumkeller, improved Dec 21 2015, Jul 27 2012 (PARI) for(n=0, 14, for(k=ceil(n/2), n, print1(binomial(n, k), ", "); ); print(); ) \\ Indranil Ghosh, Mar 31 2017 (Python) import math from sympy import binomial for n in range(15):     print([binomial(n, k) for k in range(math.ceil(n/2), n + 1)]) # Indranil Ghosh, Mar 31 2017 CROSSREFS Cf. A007318, A008619 (row lengths). Cf. A110654. Cf. A034868 (left half), A014413, A014462. Sequence in context: A006241 A336105 A282601 * A205858 A340793 A053222 Adjacent sequences:  A034866 A034867 A034868 * A034870 A034871 A034872 KEYWORD nonn,tabf,easy AUTHOR EXTENSIONS Keyword fixed and example added by Franklin T. Adams-Watters, May 27 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 22:41 EDT 2021. Contains 343096 sequences. (Running on oeis4.)