OFFSET
0,8
LINKS
G. C. Greubel, Rows n = 0..100 of the triangle, flattened
FORMULA
T(n, k) = 2*A132044(n, k) - 1.
From G. C. Greubel, Feb 13 2021: (Start)
T(n, k) = 2*binomial(n, k) - 3 with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2^(n+1) - 3*n + 1 - 2*[n=0] = A132730(n). (End)
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 5, 9, 5, 1;
1, 7, 17, 17, 7, 1;
1, 9, 27, 37, 26, 9, 1;
1, 11, 39, 67, 67, 39, 11, 1;
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 3];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 13 2021 *)
PROG
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else 2*binomial(n, k) - 3
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else 2*Binomial(n, k) - 3 >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 26 2007
EXTENSIONS
More terms added by G. C. Greubel, Feb 13 2021
STATUS
approved