login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132729
Triangle T(n, k) = 2*binomial(n, k) - 3 with T(n, 0) = T(n, n) = 1, read by rows.
3
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 9, 5, 1, 1, 7, 17, 17, 7, 1, 1, 9, 27, 37, 27, 9, 1, 1, 11, 39, 67, 67, 39, 11, 1, 1, 13, 53, 109, 137, 109, 53, 13, 1, 1, 15, 69, 165, 249, 249, 165, 69, 15, 1, 1, 17, 87, 237, 417, 501, 417, 237, 87, 17, 1, 1, 19, 107, 327, 657, 921, 921, 657, 327, 107, 19, 1
OFFSET
0,8
FORMULA
T(n, k) = 2*A132044(n, k) - 1.
From G. C. Greubel, Feb 13 2021: (Start)
T(n, k) = 2*binomial(n, k) - 3 with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2^(n+1) - 3*n + 1 - 2*[n=0] = A132730(n). (End)
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 5, 9, 5, 1;
1, 7, 17, 17, 7, 1;
1, 9, 27, 37, 26, 9, 1;
1, 11, 39, 67, 67, 39, 11, 1;
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 3];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 13 2021 *)
PROG
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else 2*binomial(n, k) - 3
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else 2*Binomial(n, k) - 3 >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 26 2007
EXTENSIONS
More terms added by G. C. Greubel, Feb 13 2021
STATUS
approved