login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132727 a(n) = 3 * 2^(n-1) * a(n-1) with a(0) = 1. 1
1, 3, 18, 216, 5184, 248832, 23887872, 4586471424, 1761205026816, 1352605460594688, 2077601987473440768, 6382393305518410039296, 39213424469105111281434624, 481854559876363607426268659712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Power sequence relate to the Pythagorean musical scale: v(n,m) = v[0] * (3 * 2^n * m) starting at m = 1: a(n) = 3 * 2^(n-1) * a(n-1).

Hankel transform of A089022 with interpolated zeros. - Paul Barry, Mar 17 2008

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..80

FORMULA

a(n) = 3^n * 2^binomial(n,2). - Paul Barry, Mar 17 2008

MATHEMATICA

a[n_]:= a[n]= If[n<2, 2^(n+1) -1, 3*2^(n-1)*a[n-1]]; Table[a[n], {n, 0, 20}]

PROG

(Sage) [3^n*2^binomial(n, 2) for n in (0..20)] # G. C. Greubel, Feb 14 2021

(Magma) [3^n*2^Binomial(n, 2): n in [0..20]]; // G. C. Greubel, Feb 14 2021

CROSSREFS

Sequence in context: A183241 A163883 A319580 * A111841 A279233 A071605

Adjacent sequences:  A132724 A132725 A132726 * A132728 A132729 A132730

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Nov 17 2007

EXTENSIONS

Offset changed by G. C. Greubel, Feb 14 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 17:34 EDT 2021. Contains 346259 sequences. (Running on oeis4.)